Cours en anglais
Un grand nombre de problèmes d'apprentissage statistique (calcul d'un estimateur, d'un classifieur, etc.) se ramène à la minimisation d'une fonctionnelle, typiquement un risque empirique. Les méthodes d'optimisation sont donc au centre du volet « pratique » de l'apprentissage statistique.
Dans ce module, l'étudiant découvrira non seulement les fondements théoriques qui s'inscrivent dans le prolongement du cours d'optimisation suivi au P1, mais également différentes techniques permettant de traiter spécifiquement le cas des données massives.
Un grand nombre de problèmes d'apprentissage statistique (calcul d'un estimateur, d'un classifieur, etc.) se ramène à la minimisation d'une fonctionnelle, typiquement un risque empirique. Les méthodes d'optimisation sont donc au centre du volet « pratique » de l'apprentissage statistique.
Dans ce module, l'étudiant découvrira non seulement les fondements théoriques qui s'inscrivent dans le prolongement du cours d'optimisation suivi au P1, mais également différentes techniques permettant de traiter spécifiquement le cas des données massives.
- Enseignant: Mohammed Abdullah
- Enseignant: Pascal Bianchi
- Enseignant: Ekhine Irurozki Arrieta
- Enseignant: Victor PRISER
- Enseignant: Victor Priser
- Enseignant: Iyad Walwil
- Enseignant responsable de l'UE: Radu-Alexandru Dragomir
- Enseignant responsable de l'UE: Olivier Fercoq