Inscription manuelle de participants

En toute généralité, le filtrage consiste à estimer de façon récursive un état caché (par exemple, la position et l'attitude d'un mobile) au vu d'observations bruitées. Le domaine d'application principal est la localisation, la navigation et la poursuite de mobiles, dans le domaine militaire ou civil, en robotique mobile, en vision par ordinateur, en communications sans-fil (GSM en extérieur, WiFi en indoor), où il s'agit de combiner : un modèle a priori de déplacement du mobile, des mesures issues de capteurs, et éventuellemnent une base de mesures de références, disponibles par exemples sous la forme d'une carte numérique (modèle numérique de terrain, carte de couverture, etc.).
Dans le cas particulier des systèmes linéaires gaussiens, le problème de filtrage possède une solution explicite, appelée filtre de Kalman. Dans le cas des systèmes non-linéaires avec des bruits non nécessairement gaussiens, ou dans le cas plus général des modèles de Markov cachés, des méthodes de simulation Monte Carlo très efficaces sont apparues récemment, sous le nom de filtres particulaires. De manière intuitive, chaque particule représente ici un état caché possible, explore l'espace d'état en suivant le modèle a priori de déplacement, et est répliquée ou au contraire éliminée à la génération suivante au vu de sa cohérence avec l'observation courante, quantifiée par la fonction de vraisemblance. Ce mécanisme de mutation / sélection a pour effet de concentrer automatiquement les particules (i.e. la puissance de calcul disponible) dans les régions d'intérêt de l'espace d'état.
Plus généralement, les algorithmes particulaires permettent d'approcher des distributions de Feynman-Kac (ou distributions de Boltzmann-Gibbs trajectorielles) au moyen de la distribution de probabilité empirique pondérée associée à un système de particules en interaction, avec des applications qui vont bien au-delà du filtrage : simulation d'évènements rares, optimisation globale, simulation moléculaire, etc.
L'objectif de ce cours est
  1. de présenter différents algorithmes particulaires,
  2. de les mettre en œuvre dans le cadre de travaux pratiques en MATLAB,
  3. et de démontrer quelques résultats de convergence en utilisant le cadre général de l'approximation particulaire des distributions de Feynman-Kac.
Les visiteurs anonymes ne peuvent pas accéder à ce cours. Veuillez vous connecter.