On s’intéressera à la résolution théorique et numérique des problèmes linéaires issus de la modélisation de phénomènes physiques divers, s’écrivant sous la forme d’équations aux dérivées partielles complétées de conditions aux limites. On traitera principalement les modèles suivants, en domaine borné : diffusion, équation de Helmholtz, problèmes avec contraintes (équation de Stokes), et enfin un problème plus exotique, issu de la modélisation de milieux non-standards en électromagnétisme, où les coefficients de l’équation changent de signe dans le domaine.
On expliquera pourquoi l’étude de ces problèmes ne peut pas systématiquement être menée à l’aide des outils classiques, vus en première année de master, comme le théorème de Lax-Migram pour la formulation continue ou le lemme de Céa pour la discrétisation. Ceci nous conduira à introduire de nouveaux outils, qui permettront d’établir des résultats similaires (caractère bien posé du problème continu, stabilité et convergence du problème discret) dans un cadre élargi. De façon plus précise, ce cours traitera des trois aspects principaux suivants :
1) construction de formulations variationnelles. Pour cela on rappellera les notions de base, autour des distributions, des espaces fonctionnels d’énergie, et des formules d’intégration par parties ;
2) résolution mathématique rigoureuse de ces formulations à l’aide du théorème de Lax-Milgram généralisé (Tcoercivité), également connu sous le nom de théorie de Ladyzhenskaya-Babuska-Brezzi (condition inf-sup) ;
3) techniques de discrétisation et analyse numérique : condition inf-sup discrète (ou T-coercivité discrète), lemme de Céa généralisé, éléments finis, éléments finis mixtes, etc.
On expliquera pourquoi l’étude de ces problèmes ne peut pas systématiquement être menée à l’aide des outils classiques, vus en première année de master, comme le théorème de Lax-Migram pour la formulation continue ou le lemme de Céa pour la discrétisation. Ceci nous conduira à introduire de nouveaux outils, qui permettront d’établir des résultats similaires (caractère bien posé du problème continu, stabilité et convergence du problème discret) dans un cadre élargi. De façon plus précise, ce cours traitera des trois aspects principaux suivants :
1) construction de formulations variationnelles. Pour cela on rappellera les notions de base, autour des distributions, des espaces fonctionnels d’énergie, et des formules d’intégration par parties ;
2) résolution mathématique rigoureuse de ces formulations à l’aide du théorème de Lax-Milgram généralisé (Tcoercivité), également connu sous le nom de théorie de Ladyzhenskaya-Babuska-Brezzi (condition inf-sup) ;
3) techniques de discrétisation et analyse numérique : condition inf-sup discrète (ou T-coercivité discrète), lemme de Céa généralisé, éléments finis, éléments finis mixtes, etc.
- Enseignant: Anne-sophie BONNET-BEN DHIA
- Enseignant: Mélanie LIMACHE GOMEZ
- Enseignant: Alejandro REYMOND
- Enseignant responsable de l'UE: Sonia FLISS