Inscription manuelle de participants

Ce cours revient sur la résolution de problèmes aux limites de type elliptique. Pour cela on revient d'abord sur la définition d'espaces fonctionnels dit de Sobolev, des traces sur le bord, et on rappelle les théorèmes d'existence et d'unicité, tels que le théorème de Lax-Milgram. Ensuite, pour un problème type de diffusion, on construit des formulations variationnelles équivalentes. On établit leur caractère bien posé (existence, unicité de la solution; dépendance continue par rapport à la donnée). Pour la résolution numérique, on construit des problèmes approchés à l'aide de la méthodes des éléments finis. Enfin on généralise l'étude à des problème de type Helmoltz, résolu à l'aide du théorème spectral.

Les visiteurs anonymes ne peuvent pas accéder à ce cours. Veuillez vous connecter.