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By the end of this lecture, students will know...

• the constitutive relations of nonlinear optics (! = #!$ + &
and & = #!'(#)$ + #!'(%)$$ + #!'(&)$$$ + ⋯) (K1)
• the basic properties of nonlinear susceptibility tensors (K4)

By the end of this course, students will be skilled at ...

• Manipulating the nonlinear susceptibility tensor components 
and, with given incident fields, calculate the components of 
nonlinear polarisation vector



Nonlinear Optics

• First descriptions  
– Expression of the macroscopic polarization in terms of 

a power series in the field strength :

– Origin of the nonlinearities : classical anharmonic 
oscillator (classical model)
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• What are the limits ?
– the response of material was described by a scalar quantity
– the response time of the material was assumed to be 

infinitely short (instantaneous response)

Done !

2 1 INTRODUCTION TO NONLINEAR OPTICS

1.1 Basics of nonlinear optics

In the following, a dielectric material is considered, which is composed of microscopic entities
(atoms, molecules, ions...). The medium is then described as a collection of electric dipoles
which, under the action of an external oscillating electric field E oscillate and radiate collectively
a source term called the macroscopic polarization P .

Nonlinear optical e↵ects occur when the macroscopic polarization P magnitude is no longer
proportional to the applied electric field amplitude E . The polarization P is the source term
that is included into Maxwell’s equations to describe the propagation of electromagnetic fields
in a medium.

The relationship between P and E generally taking a complicated form, a first attempt
consists in expressing the polarization in terms of a power series in the field strength:

P(t) = �1E(t) + �2E(t)E(t) + �3E(t)E(t)E(t) + · · · ,

where the coe�cients �i are taken constant as a first approximation. The power series expansion
is valid as long as the amplitude of the incident field is much weaker than the atomic electric
field strength.

The objective of the course is to describe more precisely the relationship between the incident
electric field and the macroscopic polarization, including the determination of the coe�cients
�1, �2, �3, which are respectively related to the linear regime, the second and the third order
nonlinear regimes. The ability to generate a nonlinear polarization is responsible of numerous
phenomena that will be illustrated in this course. One can cite the generation of a nonlinear
polarization radiating at twice the frequency of an incident monochromatic wave. Such a phe-
nomenon refers to the process of second-harmonic generation, which will be described in details
in the chapter dedicated to the 2nd order nonlinear interactions.

1.2 Physical origins of the optical nonlinearities

In order to introduce basic concepts of nonlinear optics, two simple models are presented that
lead to a relationship between the applied field strength and the polarization in:

• metals or plasma-gas,

• dielectric media.

In the case of metals or plasma-gas, the model describes the motion of a free charge gas subject to
the Lorentz force induced by an electromagnetic wave. The second model describes the motion
of bound charges (electrons) under the action of an external field. A classical description of the
electron motion gives rise to the determination of relationships for the induced dipole and for
the macroscopic polarization.

In the linear regime, both models allow to retrieve expressions of the conductivity for metals
and the susceptibility for dielectric medium. Beside the simplicity of those models, most of
the nonlinear e↵ects to be examined in more details in the following part of the course can be
predicted.

1.2.1 Light-metals interaction

n the following, it is assumed that the electrical and optical properties of a metal can be rep-
resented in a similar manner by those of a free electron gas with a density N . The density of
negative charges is compensated by a positive charge density, which is assumed to be fixed. In
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• Constitutive relations on nonlinear optics 
– Derivation of the impulse response of a time invariant 

and causal system in LINEAR and NONLINEAR regimes

• Nonlinear susceptibility tensors
– Definition
– Basic properties
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Field notation
We assume that the electric field vector can be expressed as a plane 
wave (or as a projection of plane waves, i.e through a Fourier 
transformation) :

Purely REAL quantity
Polarization state

Notation :

Similarly for the macroscopic polarization :

Notation :

With :

Purely REAL quantity
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Linear susceptibility

From Eq. (2.14), the propagation relation in a frequency domain is straightforward and is
expressed in terms of the Fourier components of electric field and polarization. The conventions
for the Fourier transform that will be used in the course are :!

"

#

$

Convention for the Fourier transform :

E(t) =

∫

E(ω)e−ıωtdω

E(ω) =
1

2π

∫

E(t)e+ıωtdt

The Eq. (2.14) can be rewritten in terms of the Fourier components :

P (ω) = ε0χ
(1)(ω)E(ω), (2.15)

where we have introduced the linear susceptibility, which is directly proportionnal to the Fourier
transform of system’s impulse response :

χ(1)(ω) = 2πTF
[

R(1)(t)
]

.

The reality of the function R(1)(t) implies that χ(1)(ω)" = χ(1)(−ω). Finally, the causality

property enables to derive the Kramers-Kronig relations that relates the real and imaginary
parts of the linear susceptibility.

2.3.2 Linear wave equation in an anisotropic medium

The linear propagation of the electromagnetic fields in a dielectric medium, free of charges and
current is governed by the following Maxwell’s equations :











∇× E = −∂B
∂t

∇ ·D = 0

∇×H =
∂D

∂t
∇ ·B = 0, (2.16)

whith the constitutive relations D = ε0E+P and B = µ0H . In order to derive a wave equation
for the electric field E , the magnetic field dependence is suppressed by taking the curl of the
first equation, using the relation between H and D and the constitutive relations:

∇×∇× E(t) +
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
. (2.17)

In the Fourier domain, this wave equation becomes :

∇×∇×E(ω)− ω2

c2
E(ω) = ω2µ0P (ω). (2.18)

An anisotropic medium is characterized by the tensorial relation between vectors D and E .
Conversely to an isotropic medium, the direction of the two vectors may differ:

D(ω) = ε(ω)E(ω), (2.19)
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Fig. 2.2. Intersection
between the wavevector
direction s and the sur-
face of indices for a unix-
ial crystal. The two in-
tersections give the two
refractive indices no and
nθ (see left), which are
seen respectively by an
ordinary wave eo and an
ordinary wave eθ (see
right)

2.3.3 Field intensity

The intensity of a wave ω is given by the magnitude of the time averaged Poynting vector:

〈S〉 = 〈E ×H〉. (2.23)

The intensity associated with a field

E(t) = E0e
−ı(ωt−kz)e+ CC

H(t) = H0e
−ı(ωt−kz)e+ CC

is
I = 2ncε0|E0|2, (2.24)

with n the refractive index of the medium at ω. We have used the relation |H0| = ε0nc|E0| (see
Maxwell’s equations).

2.3.4 Transfer of energy between an electromagnetic field and a medium

The power per unit volume that is transferred from the field to the medium (specifically to the
electric dipoles) is given by the relation:

−∂W
∂t

= 〈E · ∂P
∂t

〉. (2.25)

We consider the simple case of the propagation of a monochromatic wave in the linear regime.
The electric field and the macroscopic polarization take the following form:

E(t) = E(ω)e−ıωt +E(−ω)e+ıωt

P(t) = P (ω)e−ıωt + P (−ω)e+ıωt,

with P (ω) = ε0χ(1)(ω)E(ω). Substituting these relations into (2.25) leads to the equality:

−∂W
∂t

= 2ωε0
(

e · χ(1)′′(ω)e
)

|E(ω)|2, (2.26)

with χ(1)(ω) = χ(1)′ + ıχ(1)′′ .

In conclusion, the transfer of energy between an electromagnetic wave and a medium implies
a non vanishing imaginary part of susceptibility. A positive sign for the imaginary part leads to
absorption, whereas a negative sign leads to amplification of the wave through the transfer of
energy from the medium to the wave.
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Pulse response in LINEAR regime
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Description of the propagation of an electromagnetic field E(t) through a linear medium :
- LINEAR MEDIUM = LINEAR FILTER

- TIME INVARIANT & CAUSAL linear system (+LOCAL Response)

Linear
Medium

Excitation Response
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Properties : -E(t) and P(t) are purely real quantities, same for T(1)(t,T)
- time invariant system :

-Causal system implies that

: Impulse response of the Medium : general case of an anisotropic 
material, it is a tensor of rank 2 (i.e. 3x3 matrix)
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2.3 Linear wave equation

In this section, we briefly recall the properties of the wave propagation through a linear dielectric
medium. In the following, the medium is treated as a linear filter (theory of the linear systems).
The only assumptions are that the system is time invariant and causal. As for a linear filter,
being characterized by its impulse response, the relation between the excitation signal, i.e. the
incident electric field, and the response signal, i.e. the polarization, takes a convolutional form.
Through this linear filter model, we will show that the linear susceptibility can be interpreted
as the frequency response of the system. The constitutive relation P (ω) = ε0χ(1)(ω)E(ω)
corresponds to the frequency response of a filter, where the response signal P results from the
propagation of an input signal E through a filter with a frequency transfer function ε0χ(1)(ω).
In this description, which accounts for a local response in space, we shall also take into account
the vectorial properties of the filter. The frequency response function, i.e. the susceptibility,
may take a tensorial form.

2.3.1 Constitutive relations : impulse response and linear susceptibility

We are considering the propagation of an electromagnetic field E(t) propagating through a linear
medium, which will be described as a linear filter. The relation between the polarization and
the applied electric field is then given by:

P(t) = ε0

∫ +∞

−∞
T (1)(t, τ)E(τ)dτ, (2.13)

with T (1)(t, τ) the system’s impulse response. For convenience, and in order to be in accor-
dance with the constitutive relation (2.2), we have introduced ε0 in the relation. Finally, the
impulse response can be represented as a rank 2 tensor (for a linear system with a local response)
and will describe the anisotropy properties of the material.

Subsequently, the material is assumed to be a linear time invariant system and a causal
system. The time invariant property signifies that the impulse response of the filter does not
depend on the excitation time. The causality imposes that the system response originates
from an external excitation. The response vanishes in absence of input signal. Actually, the
relation (2.13) does not imply the time invariance property.

Properties of the linear impulse response

Vectors E(t) and P(t) are purely real quantities. It implies the same for the impulse response
T (1)(t, τ).

A time invariant system implies that the impulse response does not depend on the time of
excitation, but it directly depends on the time delay between the response and the excitation :

T (1)(t, τ) = R(1)(t− τ).

With this assumption, the relation (2.13) takes a convolution form :

P(t) = ε0

∫

R(1)(t− τ)E(τ)dτ,

= ε0

∫

R(1)(τ)E(t− τ)dτ (2.14)

A causal system implies that R(1)(τ) = 0 for τ < 0.
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Convention for the 
Fourier Transform : 

Fourier

Transform

Linear Susceptibility : 
Fourier transform of the 

pulse response
Properties : 

- Reality of the function

- The causality property enables to derive the Kramers-Kroning relations that
relates the real and imaginary parts of the linear susceptibility
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2.3.2 Linear wave equation in an anisotropic medium

The linear propagation of the electromagnetic fields in a dielectric medium, free of charges and
current is governed by the following Maxwell’s equations :











∇× E = −∂B
∂t

∇ ·D = 0

∇×H =
∂D

∂t
∇ ·B = 0, (2.16)

whith the constitutive relations D = ε0E+P and B = µ0H . In order to derive a wave equation
for the electric field E , the magnetic field dependence is suppressed by taking the curl of the
first equation, using the relation between H and D and the constitutive relations:

∇×∇× E(t) +
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
. (2.17)

In the Fourier domain, this wave equation becomes :

∇×∇×E(ω)− ω2

c2
E(ω) = ω2µ0P (ω). (2.18)

An anisotropic medium is characterized by the tensorial relation between vectors D and E .
Conversely to an isotropic medium, the direction of the two vectors may differ:

D(ω) = ε(ω)E(ω), (2.19)
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dance with the constitutive relation (2.2), we have introduced ε0 in the relation. Finally, the
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depend on the excitation time. The causality imposes that the system response originates
from an external excitation. The response vanishes in absence of input signal. Actually, the
relation (2.13) does not imply the time invariance property.

Properties of the linear impulse response

Vectors E(t) and P(t) are purely real quantities. It implies the same for the impulse response
T (1)(t, τ).

A time invariant system implies that the impulse response does not depend on the time of
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Nonlinear pulse response
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Propagation of an electromagnetic field E(t) through a NONlinear medium :
NONLINEAR MEDIUM = TIME INVARIANT & CAUSAL system

(+ LOCAL Response)
NonLinear 
Medium

Excitation Response

Linear Macroscopic Polarization 

20 2 NONLINEAR WAVE EQUATIONS

2.4 Nonlinear susceptibilities

Following this reminder on the linear propagation regime of electromagnetic waves, we next
study the case of the nonlinear propagation. As in the linear case, it requires to set a general
form for the relation between the macroscopic polarization P and the electric field E . We
consider first an incident electromagnetic field upon a causal and time invariant system with a
nonlinear impulse response. Subsequently, the electric dipole approximation is assumed, which
consists in neglecting the quadripole term in the constitutive relation (2.11) and the polarization
term is developed in power series expansion of the electric field:

P(t) = P
(1)(t) +P

(2)(t) +P
(3)(t) + · · · , (2.27)

where P (1)(t) is a linear function of E (linear response), P(2)(t) is a quadratic function of E
(2nd order nonlinear response), etc. Having defined the nonlinear response of the material in
the time domain, we can write this relation in the frequency domain and define a nonlinear
susceptibility, similarly to the case of a linear susceptibility. The properties of the nonlinear
susceptibility tensors will be presented in details, especially their symmetry properties.

2.4.1 Constitutive relations - Nonlinear impulse response

Nonlinear impulse response

A generalization of the linear time response (2.13) applied to the 2nd order yields:

P(2)(t) = ε0

∫ ∫

T (2)(t; τ1, τ2)E(τ1)E(τ2)dτ1dτ2, (2.28)

with T (2)(t; τ1, τ2) the 2nd order nonlinear impulse response, which is a 3rd order tensor in order

to fully describe the quadratic dependance of the 2nd order nonlinear polarization. For a given
applied fieldE(t), and assuming a given function T (2)(t; τ1, τ2), the relation (2.28) determines the

time evolution of the 3 vectorial components for the second order polarization P(2)(t), which
is induced by the nonlinear interaction between the incident field and the medium. The ith
component is given by:

P(2)
i (t) = ε0

∑

(j,k)

∫ ∫

T (2)
ijk (t; τ1, τ2)Ej(τ1)Ek(τ2)dτ1dτ2, (2.29)

where T (2)
ijk is the component ijk of the tensor T (2), Ei,j,k and Pi,j,k are the three vectorial

components of E and P .

Properties of the nonlinear pulse response

- Symmetry condition: The tensor T (2) can be expressed as the summation of a symmetric

and an antisymmetric tensor:

T (2)
ijk (t; τ1, τ2) = S(2)

ijk(t; τ1, τ2) +A(2)
ijk(t; τ1, τ2), (2.30)

where

S(2)
ijk =

1

2

[

T (2)
ijk (t; τ1, τ2) + T (2)

ikj (t; τ2, τ1)
]

is a symmetric tensor5, and

A(2)
ijk =

1

2

[

T (2)
ijk (t; τ1, τ2)− T (2)

ikj (t; τ2, τ1)
]

5S(2)
ijk(t; τ1, τ2) = S(2)

ikj(t; τ2, τ1)
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c2
E(ω) = ω2µ0P (ω). (2.18)

An anisotropic medium is characterized by the tensorial relation between vectors D and E .
Conversely to an isotropic medium, the direction of the two vectors may differ:

D(ω) = ε(ω)E(ω), (2.19)
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2.3 Linear wave equation

In this section, we briefly recall the properties of the wave propagation through a linear dielectric
medium. In the following, the medium is treated as a linear filter (theory of the linear systems).
The only assumptions are that the system is time invariant and causal. As for a linear filter,
being characterized by its impulse response, the relation between the excitation signal, i.e. the
incident electric field, and the response signal, i.e. the polarization, takes a convolutional form.
Through this linear filter model, we will show that the linear susceptibility can be interpreted
as the frequency response of the system. The constitutive relation P (ω) = ε0χ(1)(ω)E(ω)
corresponds to the frequency response of a filter, where the response signal P results from the
propagation of an input signal E through a filter with a frequency transfer function ε0χ(1)(ω).
In this description, which accounts for a local response in space, we shall also take into account
the vectorial properties of the filter. The frequency response function, i.e. the susceptibility,
may take a tensorial form.

2.3.1 Constitutive relations : impulse response and linear susceptibility

We are considering the propagation of an electromagnetic field E(t) propagating through a linear
medium, which will be described as a linear filter. The relation between the polarization and
the applied electric field is then given by:

P(t) = ε0

∫ +∞

−∞
T (1)(t, τ)E(τ)dτ, (2.13)

with T (1)(t, τ) the system’s impulse response. For convenience, and in order to be in accor-
dance with the constitutive relation (2.2), we have introduced ε0 in the relation. Finally, the
impulse response can be represented as a rank 2 tensor (for a linear system with a local response)
and will describe the anisotropy properties of the material.

Subsequently, the material is assumed to be a linear time invariant system and a causal
system. The time invariant property signifies that the impulse response of the filter does not
depend on the excitation time. The causality imposes that the system response originates
from an external excitation. The response vanishes in absence of input signal. Actually, the
relation (2.13) does not imply the time invariance property.

Properties of the linear impulse response

Vectors E(t) and P(t) are purely real quantities. It implies the same for the impulse response
T (1)(t, τ).

A time invariant system implies that the impulse response does not depend on the time of
excitation, but it directly depends on the time delay between the response and the excitation :

T (1)(t, τ) = R(1)(t− τ).

With this assumption, the relation (2.13) takes a convolution form :

P(t) = ε0

∫

R(1)(t− τ)E(τ)dτ,

= ε0

∫

R(1)(τ)E(t− τ)dτ (2.14)

A causal system implies that R(1)(τ) = 0 for τ < 0.

2nd order nonlinear impulse response = 3rd order
tensor (in order to fully describe the quadratic
dependance of the 2nd order nonlinear polarization)

2nd order nonlinear Macroscopic 
Polarization 

Expression of the ith component :

Component ijk of the tensor
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2.4 Nonlinear susceptibilities

Following this reminder on the linear propagation regime of electromagnetic waves, we next
study the case of the nonlinear propagation. As in the linear case, it requires to set a general
form for the relation between the macroscopic polarization P and the electric field E . We
consider first an incident electromagnetic field upon a causal and time invariant system with a
nonlinear impulse response. Subsequently, the electric dipole approximation is assumed, which
consists in neglecting the quadripole term in the constitutive relation (2.11) and the polarization
term is developed in power series expansion of the electric field:

P(t) = P
(1)(t) +P

(2)(t) +P
(3)(t) + · · · , (2.27)

where P (1)(t) is a linear function of E (linear response), P(2)(t) is a quadratic function of E
(2nd order nonlinear response), etc. Having defined the nonlinear response of the material in
the time domain, we can write this relation in the frequency domain and define a nonlinear
susceptibility, similarly to the case of a linear susceptibility. The properties of the nonlinear
susceptibility tensors will be presented in details, especially their symmetry properties.

2.4.1 Constitutive relations - Nonlinear impulse response

Nonlinear impulse response

A generalization of the linear time response (2.13) applied to the 2nd order yields:

P(2)(t) = ε0

∫ ∫

T (2)(t; τ1, τ2)E(τ1)E(τ2)dτ1dτ2, (2.28)

with T (2)(t; τ1, τ2) the 2nd order nonlinear impulse response, which is a 3rd order tensor in order

to fully describe the quadratic dependance of the 2nd order nonlinear polarization. For a given
applied fieldE(t), and assuming a given function T (2)(t; τ1, τ2), the relation (2.28) determines the

time evolution of the 3 vectorial components for the second order polarization P(2)(t), which
is induced by the nonlinear interaction between the incident field and the medium. The ith
component is given by:

P(2)
i (t) = ε0

∑

(j,k)

∫ ∫

T (2)
ijk (t; τ1, τ2)Ej(τ1)Ek(τ2)dτ1dτ2, (2.29)

where T (2)
ijk is the component ijk of the tensor T (2), Ei,j,k and Pi,j,k are the three vectorial

components of E and P .

Properties of the nonlinear pulse response

- Symmetry condition: The tensor T (2) can be expressed as the summation of a symmetric

and an antisymmetric tensor:

T (2)
ijk (t; τ1, τ2) = S(2)

ijk(t; τ1, τ2) +A(2)
ijk(t; τ1, τ2), (2.30)

where

S(2)
ijk =

1

2

[

T (2)
ijk (t; τ1, τ2) + T (2)

ikj (t; τ2, τ1)
]

is a symmetric tensor5, and

A(2)
ijk =

1

2

[

T (2)
ijk (t; τ1, τ2)− T (2)

ikj (t; τ2, τ1)
]

5S(2)
ijk(t; τ1, τ2) = S(2)

ikj(t; τ2, τ1)
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nth order nonlinear pulse response :

PROPERTIES of the nonlinear pulse response :

Symmetry condition: A tensor can be expressed as the summation of a 
symmetric and an antisymmetric tensor

Substitution into 
Shows that

Conclusion : the nonlinear 
pulse response tensor is 
SYMMETRIC
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is an antisymmetric tensor6. Substituting (2.30) in (2.29) shows that the antisymmetric
tensor does not contribute to the expression of Pi and vanishes. In conclusion, the tensor
T (2) is symmetric and :

T (2)
ijk (t; τ1, τ2) = T (2)

ikj (t; τ2, τ1) (2.31)

- Time invariant response property: As we have assumed a time invariance in the system
response, the impulse response shall not depend on the time of excitation and the equality

T (2)(t+ t0; τ1, τ2) = T (2)(t; τ1 − t0, τ2 − t0)

is valid for any given time t. In particular, it is verified for t = 0 and we can write an
impulse response with a dependence on the time delay between the excitation and the
response times:

T (2)(t; τ1, τ2) = R(2)(t− τ1, t− τ2). (2.32)

The second order nonlinear time response is then rewritten into the form:

P (2)(t) = ε0

∫ ∫

R(2)(t− τ1, t− τ2)E(τ1)E(τ2)dτ1dτ2,

= ε0

∫ ∫

R(2)(τ1, τ2)E(t− τ1)E(t− τ2)dτ1dτ2. (2.33)

- Causal system: The causality property implies that R(2)(τ1, τ2) = 0 for τ1 < 0 and τ2 < 0.

- Real function: The field vectors are real quantities which imply the reality of the nonlinear
impulse response.

- Intrinsic permutation property: We have shown that the tensor R(2) is symmetric. It

means that the component R(2)
ijk(τ1, τ2) is invariant through the simultaneous permutation

of the couple of indices (j, τ1) and (k, τ2).

nth order nonlinear pulse response

The nth nonlinear contribution to the response function is given by :

P
(n)(t) = ε0

∫ ∫

· · ·
∫

R...

(n)(t; τ1, τ2, · · · , τn)E(t−τ1)E(t−τ2) · · ·E(t−τn)dτ1dτ2 · · · dτn. (2.34)

The properties listed for the 2nd order nonlinear time response are generalized to any nth order
nonlinear time response.

2.4.2 Constitutive relations - Nonlinear susceptibilities

Numerous nonlinear interactions can be easily solved working in the frequency domain. Next,
we derive the expression of the polarization in the frequency domain.

6A(2)
ijk(t; τ1, τ2) = −A(2)

ikj(t; τ2, τ1)
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PROPERTIES of the nonlinear pulse response :
Time invariant response property :

Causal system:

Real function: The field vectors are real quantities, which imply the reality of the 
nonlinear pulse response.
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T (2)
ijk (t; τ1, τ2) = T (2)

ikj (t; τ2, τ1) (2.31)

- Time invariant response property: As we have assumed a time invariance in the system
response, the impulse response shall not depend on the time of excitation and the equality

T (2)(t+ t0; τ1, τ2) = T (2)(t; τ1 − t0, τ2 − t0)

is valid for any given time t. In particular, it is verified for t = 0 and we can write an
impulse response with a dependence on the time delay between the excitation and the
response times:

T (2)(t; τ1, τ2) = R(2)(t− τ1, t− τ2). (2.32)

The second order nonlinear time response is then rewritten into the form:

P (2)(t) = ε0

∫ ∫

R(2)(t− τ1, t− τ2)E(τ1)E(τ2)dτ1dτ2,

= ε0

∫ ∫

R(2)(τ1, τ2)E(t− τ1)E(t− τ2)dτ1dτ2. (2.33)

- Causal system: The causality property implies that R(2)(τ1, τ2) = 0 for τ1 < 0 and τ2 < 0.

- Real function: The field vectors are real quantities which imply the reality of the nonlinear
impulse response.

- Intrinsic permutation property: We have shown that the tensor R(2) is symmetric. It

means that the component R(2)
ijk(τ1, τ2) is invariant through the simultaneous permutation

of the couple of indices (j, τ1) and (k, τ2).

nth order nonlinear pulse response

The nth nonlinear contribution to the response function is given by :

P
(n)(t) = ε0

∫ ∫

· · ·
∫

R...

(n)(t; τ1, τ2, · · · , τn)E(t−τ1)E(t−τ2) · · ·E(t−τn)dτ1dτ2 · · · dτn. (2.34)

The properties listed for the 2nd order nonlinear time response are generalized to any nth order
nonlinear time response.

2.4.2 Constitutive relations - Nonlinear susceptibilities

Numerous nonlinear interactions can be easily solved working in the frequency domain. Next,
we derive the expression of the polarization in the frequency domain.

6A(2)
ijk(t; τ1, τ2) = −A(2)

ikj(t; τ2, τ1)
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Case of the 2nd order nonlinear susceptibility :
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Nonlinear susceptibility tensor
Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd
order NL medium :

•Classical anharmonic oscillator : scalar expression of the polarization 
@ w=w1+w2

(all the dipoles are supposed identically oriented along the linear 
polarization state of the applied field ):

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

z

x
y

z

E

General relation :



13N. Dubreuil - NONLINEAR OPTICS

Nonlinear susceptibility tensor
Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd
order NL medium :

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

z

General relation :

Vector / Tensor notation :

VectorsVector
Tensor of rank 3
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Nonlinear susceptibility tensor
To conclude

• The response of a material subject to the excitation by an 
electromagnetic field is given by the macroscopic polarization

• In the electric dipole approximation (which consists in neglecting the 
quadripole term in the constitutive relation), the polarization term is 
developed in power series expansion of the electric field:

2.3 Nonlinear susceptibility tensors 13

2.3 Nonlinear susceptibility tensors

Following this reminder on the linear propagation regime of electromagnetic waves, we next
study the case of the nonlinear propagation. As in the linear case, it requires to set a general
form for the relation between the macroscopic polarization P and the electric field E . We
consider first an incident electromagnetic field upon a causal and time invariant system with a
nonlinear impulse response. Subsequently, the electric dipole approximation is assumed, which
consists in neglecting the quadripole term in the constitutive relation and the polarization term
is developed in power series expansion of the electric field:

P(t) = P(1)(t) +P(2)(t) +P(3)(t) + · · · , (2.2)

where P(1)(t) is a linear function of E (linear response), P(2)(t) is a quadratic function of E
(2nd order nonlinear response), etc. Having defined the nonlinear response of the material in
the time domain, we can write this relation in the frequency domain and define a nonlinear
susceptibility, similarly to the case of a linear susceptibility. The properties of the nonlinear
susceptibility tensors will be presented in details, especially their symmetry properties.

2.3.1 Nonlinear impulse response

A generalization of the linear time response (??) applied to the 2nd order yields:

P(2)(t) = ✏0

Z Z
T (2)(t; ⌧1, ⌧2)E(⌧1)E(⌧2)d⌧1d⌧2, (2.3)

with T (2)(t; ⌧1, ⌧2) the 2nd order nonlinear impulse response, which is a 3rd order tensor in order

to fully describe the quadratic dependance of the 2nd order nonlinear polarization. For a given
applied field E(t), and assuming a given function T (2)(t; ⌧1, ⌧2), the relation (2.3) determines the

time evolution of the 3 vectorial components for the second order polarization P(2)(t), which
is induced by the nonlinear interaction between the incident field and the medium. The ith
component is given by:

P(2)
i (t) = ✏0

X

(j,k)

Z Z
T (2)
ijk (t; ⌧1, ⌧2)Ej(⌧1)Ek(⌧2)d⌧1d⌧2, (2.4)

where T (2)
ijk is the component ijk of the tensor T (2), Ei,j,k and Pi,j,k are the three vectorial

components of E and P .

Properties of the nonlinear pulse response

- Symmetry condition: The tensor T (2) can be expressed as the summation of a symmetric

and an antisymmetric tensor:

T (2)
ijk (t; ⌧1, ⌧2) = S(2)

ijk(t; ⌧1, ⌧2) +A(2)
ijk(t; ⌧1, ⌧2), (2.5)

where

S(2)
ijk =

1

2

h
T (2)
ijk (t; ⌧1, ⌧2) + T (2)

ikj (t; ⌧2, ⌧1)
i

is a symmetric tensor1, and

A(2)
ijk =

1

2

h
T (2)
ijk (t; ⌧1, ⌧2)� T (2)

ikj (t; ⌧2, ⌧1)
i

1S(2)
ijk(t; ⌧1, ⌧2) = S(2)

ikj(t; ⌧2, ⌧1)

• Relation with the nonlinear impulse response of the material : 
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is an antisymmetric tensor2. Substituting (2.5) in (2.4) shows that the antisymmetric
tensor does not contribute to the expression of Pi and vanishes. In conclusion, the tensor
T (2) is symmetric and :

T (2)
ijk (t; ⌧1, ⌧2) = T (2)

ikj (t; ⌧2, ⌧1) (2.6)

- Time invariant response property: As we have assumed a time invariance in the system
response, the impulse response shall not depend on the time of excitation and the equality

T (2)(t+ t0; ⌧1, ⌧2) = T (2)(t; ⌧1 � t0, ⌧2 � t0)

is valid for any given time t. In particular, it is verified for t = 0 and we can write an
impulse response with a dependence on the time delay between the excitation and the
response times:

T (2)(t; ⌧1, ⌧2) = R(2)(t� ⌧1, t� ⌧2). (2.7)

The second order nonlinear time response is then rewritten into the form:

P(2)(t) = ✏0

Z Z
R(2)(t� ⌧1, t� ⌧2)E(⌧1)E(⌧2)d⌧1d⌧2,

= ✏0

Z Z
R(2)(⌧1, ⌧2)E(t� ⌧1)E(t� ⌧2)d⌧1d⌧2. (2.8)

- Causal system: The causality property implies that R(2)(⌧1, ⌧2) = 0 for ⌧1 < 0 and ⌧2 < 0.

- Real function: The field vectors are real quantities which imply the reality of the nonlinear
impulse response.

- Intrinsic permutation property: We have shown that the tensor R(2) is symmetric. It

means that the component R(2)
ijk(⌧1, ⌧2) is invariant through the simultaneous permutation

of the couple of indices (j, ⌧1) and (k, ⌧2).

nth order nonlinear pulse response

The nth nonlinear contribution to the response function is given by :

P(n)(t) = ✏0

Z Z
· · ·

Z
R...

(n)(t; ⌧1, ⌧2, · · · , ⌧n)E(t� ⌧1)E(t� ⌧2) · · ·E(t� ⌧n)d⌧1d⌧2 · · · d⌧n. (2.9)

The properties listed for the 2nd order nonlinear time response are generalized to any nth order
nonlinear time response.

2.3.2 2nd order nonlinear susceptibility

In order to derive a relation between the polarization and the electric field in the frequency
domain, the polarization P(2)(t) is written in terms of Fourier components:

P(2)(t) =

Z
P

(2)(!)e�ı!td!

= ✏0

Z Z
R(2)(⌧1, ⌧2)E(t� ⌧1)E(t� ⌧2)d⌧1d⌧2.

2A(2)
ijk(t; ⌧1, ⌧2) = �A(2)

ikj(t; ⌧2, ⌧1) vectorsvector Tensor of 
rank 3

(impulse 
response)
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Nonlinear susceptibility tensor
To conclude

• Relation with the nonlinear impulse response of the material : 
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is valid for any given time t. In particular, it is verified for t = 0 and we can write an
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response times:

T (2)(t; ⌧1, ⌧2) = R(2)(t� ⌧1, t� ⌧2). (2.7)

The second order nonlinear time response is then rewritten into the form:

P(2)(t) = ✏0

Z Z
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= ✏0

Z Z
R(2)(⌧1, ⌧2)E(t� ⌧1)E(t� ⌧2)d⌧1d⌧2. (2.8)

- Causal system: The causality property implies that R(2)(⌧1, ⌧2) = 0 for ⌧1 < 0 and ⌧2 < 0.

- Real function: The field vectors are real quantities which imply the reality of the nonlinear
impulse response.

- Intrinsic permutation property: We have shown that the tensor R(2) is symmetric. It

means that the component R(2)
ijk(⌧1, ⌧2) is invariant through the simultaneous permutation

of the couple of indices (j, ⌧1) and (k, ⌧2).

nth order nonlinear pulse response

The nth nonlinear contribution to the response function is given by :

P(n)(t) = ✏0

Z Z
· · ·

Z
R...

(n)(t; ⌧1, ⌧2, · · · , ⌧n)E(t� ⌧1)E(t� ⌧2) · · ·E(t� ⌧n)d⌧1d⌧2 · · · d⌧n. (2.9)

The properties listed for the 2nd order nonlinear time response are generalized to any nth order
nonlinear time response.

2.3.2 2nd order nonlinear susceptibility

In order to derive a relation between the polarization and the electric field in the frequency
domain, the polarization P(2)(t) is written in terms of Fourier components:

P(2)(t) =

Z
P

(2)(!)e�ı!td!

= ✏0

Z Z
R(2)(⌧1, ⌧2)E(t� ⌧1)E(t� ⌧2)d⌧1d⌧2.

2A(2)
ijk(t; ⌧1, ⌧2) = �A(2)

ikj(t; ⌧2, ⌧1)• The nonlinear susceptibility is proportional to the FOURIER TRANSFORM 
of the impulse response of the material 
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Substituting the relation E(t� ⌧) =
R
E(!)e�ı!(t�⌧)d!, we obtain:

P(2)(t) = ✏0

Z Z
�(2)(!1 + !2;!1,!2)E(!1)E(!2)e

ı(!1+!2)td!1d!2, (2.10)

=

Z Z
P

(2)(!1 + !2)e
ı(!1+!2)td!1d!2, (2.11)

where we have introduced a 2nd order nonlinear susceptibilities �(2)(!1 + !2;!1,!2) that turns

to be proportional to the Fourier transform of the nonlinear pulse response,

�(2)(!1 + !2;!1,!2) =

Z Z
R(2)(⌧1, ⌧2)e

ı(!1⌧1+!2⌧2)d⌧1d⌧2.

= (2⇡)2TF
h
R(2)(⌧1, ⌧2)

i
.

From Equations (2.10) and (2.11), we find the constitutive relation for the 2nd order nonlinear
optical interactions :↵

⌦
�
 P

(2)(! = !1 + !2) = ✏0 �
(2)(! = !1 + !2;!1,!2)E(!1)E(!2) (2.12)

This constitutive relation means that the interaction of two waves at !1 and !2 in a second
order nonlinear medium generates a polarization term at ! = !1+!2. Notice that the frequency
arguments can take either positive or negative values, which comes from the assumption for the
electric field E(t) to be a purely real quantity (see (1.7)).

As an illustration and depending on the interacting frequency components, we can list a
variety of 2nd order nonlinear interactions :

• A situation where !1 = !2 generates a polarization P
(2)(2!) : second harmonic generation,

• A situation where !1 = �!2 generates a static polarization P
(2)(0) : optical rectification,

• A situation where !1 = ! and !2 = 0 describes the electro-optic e↵ect,

• A situation where !1 6= !2 generates a polarization P
(2)(!1 + !2) and P

(2)(!1 � !2) :
respectively the sum and di↵erence frequency generation.

Each vectorial component of the polarization can be expressed in terms the tensorial com-

ponents �(2)
ijk(! = !1 + !2;!1,!2) and the electric field components Ei,j,k(!) :

P (2)
i (!1 + !2) = ✏0

X

jk

�(2)
ijk(!1 + !2;!1,!2)Ej(!1)Ek(!2).

This relation might also require to sum over the frequency components :

Pi(! = !p + !q) = ✏0
X

jk

X

(pq)

�(2)
ijk(! = !p + !q;!p,!q)Ej(!p), Ek(!q).

P (! = !p + !q) = ✏0
X

(pq)

�(2)(! = !p + !q;!p,!q)E(!p)E(!q)

2.3 Nonlinear susceptibility tensors 15

Substituting the relation E(t� ⌧) =
R
E(!)e�ı!(t�⌧)d!, we obtain:

P(2)(t) = ✏0

Z Z
�(2)(!1 + !2;!1,!2)E(!1)E(!2)e

ı(!1+!2)td!1d!2, (2.10)
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Nonlinear susceptibility tensor
To conclude

2.3 Nonlinear susceptibility tensors 15
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Nonlinear susceptibility tensor -
Definition

Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd
order NL medium :

•Classical anharmonic oscillator : scalar expression of the polarization 
@ w=w1+w2

(all the dipoles are supposed identically oriented along the linear 
polarization state of the applied field ):

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

z

x
y

z

E

General relation :
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Nonlinear susceptibility tensor -
Definition

Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd
order NL medium :

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

z

General relation :

Vector / Tensor notation :

VectorsVector
Tensor of rank 3
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Nonlinear susceptibility tensor -
Definition

ü 2nd order NL susceptibility :

= tensor of rank 3

It contains 9x 3 = 27 components

Comment : Each tensor is defined for a set of frequencies. 
The value of the components of the tensor depends on the frequencies (in a 
general manner)  !!!

• General expression of the 2nd order NL polarization :

Expression of the  ith component :
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Nonlinear susceptibility tensor -
Definition

ü Nth order NL susceptibility
… just have fun !!

ü 3rd order NL susceptibility :
= tensor of rank 4

81 components !!!!

• General expression of the 3rd order NL polarization :

Expression of the  ith component :
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Properties of NL susceptibilities

Nonlinear susceptibilities = Tensor 

  

€ 

! 
P (ω1),

! 
P (ω2),

! 
P (ω3)

...

...

12 tensors = 12 x 27 = 324 components !!!

  

€ 

! 
P (−ω1),

! 
P (−ω2),

! 
P (−ω3)

...

...

...

...

...

...

Complete description of the waves interaction (3 waves in this case) 
requires the determination of : 
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Properties of NL susceptibilities

• Reality of the fields

*

• Intrinsic Permutation Symmetry

The quantities : 

and are numerically equal

Consequence

• Lossless media 

Verification : in the case of the classical oscillator model discussed in ch1, 
since

€ 

ω <<ω0

Expression of cNL is a purely real quantity
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Properties of NL susceptibilities
• Degeneracy Factor 

Determination of P(w) : summation over field frequencies in interaction and for 
which    

€ 

ω =ω1 +ω2 +ω3 +!

Due to intrinsic permutation simplification occurs

Example : Sum-Frequency generation

Intrinsic permutation 
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Properties of NL susceptibilities

Degeneracy factor

• Degeneracy Factor

- 2nd order NL Polarization expression

24 2 NONLINEAR WAVE EQUATIONS

The intrinsic permutation symmetry for the nonlinear susceptibilities implies that the
two right hand side terms are equal (they differ by a permutation between the frequency
arguments ω1 and ω2), and yields:

Pi(ω3) = 2ε0
∑

jk

χ(2)
ijk(ω3;ω1,ω2)Ej(ω1)Ek(ω2).

The factor 2 in the latter equation is called the degeneracy factor and relies on the fact that
the interacted wave are discernible. Waves are discernible if they differ either in frequency,
in polarization, in wave vector (in the direction of propagation), in spatial mode. In the
case of the second-harmonic generation, the degeneracy factor is equal to 2 as j != k. If
not, it takes the value 1, meaning that the interacted waves at ω can not be distinguished.

To summarize, the second-order nonlinear polarization components can be expressed as:

Pi(ω3) = D(2)ε0
∑

jk

χ(2)
ijk(ω3;ω1,ω2)Ej(ω1)Ek(ω2), (2.40)

with D(2) the degeneracy factor that accounts for the number of distinct permutation
between the applied fields. It can take the values :

• D(2) = 1 in the case of one distinct field (ω1 = ω2),

• D(2) = 2 in the case of 2 distinct fields (ω1 != ω2).

The degeneracy factor for the third order nonlinear polarization components at ω4 =
ω1 + ω2 + ω3 take the values:

• D(3) = 1 in the case of one distinct field (ω1 = ω2 = ω3),

• D(3) = 3 in the case of 2 distinct fields (ω1 = ω2 != ω3),

• D(3) = 3! = 6 in the case of 3 distinct fields (ω1 != ω2 != ω3).

Kleinman’s symmetry: For a lossless medium, it can be shown that a sufficient condition is

χ(2)
ijk(ω3 = ω1+ω2;ω1,ω2) = χ(2)

jki(−ω1 = ω2−ω3;ω2,−ω3) = χ(2)
kji(−ω2 = ω1−ω3;ω1,−ω3).

(2.41)
This condition can be derived (see tutorial) in a simple way from the expression of the
average power transferred by the electromagnetic field to the medium per volume unit8:

−∂W
∂t

= 〈E · ∂P
∂t

〉,

where 〈...〉 stands for a time average. The simultaneous permutations of the indices with
the frequency arguments in (2.41) can be further extended by neglecting the dispersion of
the nonlinear susceptibilities for any strong non-resonant interaction. The relation (2.41)
becomes:

χ(2)
ijk(ω3 = ω1 + ω2;ω1,ω2) = χ(2)

jki(ω3 = ω1 + ω2;ω1,ω2) = χ(2)
kji(ω3 = ω1 + ω2;ω1,ω2)

= +Intrinsic permutations (2.42)

In conclusion, the nonlinear susceptibilities in lossless media, which implies no exchange of
energy between the nonlinear medium and the interacted waves, support a full permutation
of the indices, without permuting the frequencies.

8Cf. A. Yariv, Quantum Electronics, Third edition, Chapter 5.
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- 3rd order NL Polarization expression
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25N. Dubreuil - NONLINEAR OPTICS

Properties of NL susceptibilities
• Kleinman Symmetry - Lossless Media

Lossless media : no exchange of energy with the nonlinear medium

(See Tutorial 1)

Far from any material resonance, cNL does not depend on frequencies Consequence :

+ intrinsic permutation

Full permutation of the indices, without permuting the 
frequencies

Simultaneous permutations of the indices with 
the frequency arguments

Permutation of the indices without permuting frequencies
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Spatial Symmetries

Spatial symmetry properties of the nonlinear material : reduction 
of the number of independent components

• Example : media inside which the directions x and y are similar (from 
th point of view of its NL response)

€ 

χ zxx
(2) = χ zyy

(2) (for instance)
Strong reduction of the 
numbers of 
independent 
components

• Important example : Centre-symmetric material 

2nd order nonlinear susceptibility vanishes
(i.e  silica...)

=0

(generalization : 2Nth order )
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Contracted notation deff
When the Kleinman symmetry condition is valid

Or
For 2nd harmonic generation process

Permutation symmetry of the last two indices

  

€ 

dil =

d11 d12! d16
d21 ! d26
d31 ! d36

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

Matrix with 6x3 components

Contraction notation of the last two indices
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Spatial Symmetries
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Spatial Symmetries

EXAMPLE : KDP crystal – See the learning activity on eCampus

2w generation : Determination of     

€ 

! 
P (2ω)

Point group 42m - 3 nonzero coefficient, 2 numerically equal 
coefficents :
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Student activities

To complete, read the lecture notes : 
sections 2.2 and 2.3

+ Complete two short tests on eCampus
by next Monday (27 Nov.)


