Correction des aberrations sur l'axe d'une lunette

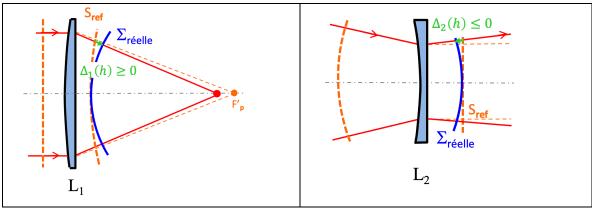
Corrigé rapide

A. Mise en place géométrique

- 1. & 2. En comparant la hauteur d'impact sur L_2 et l'objectif d'un rayon limité par L_1 , il apparaît que L_1 limite l'ouverture numérique de l'ensemble : $h_2 = \frac{\emptyset_1/2}{G} < \frac{\emptyset_2}{2}$ et également $\frac{F/3}{2}$ (objectif photo). D'où $\sin \alpha_m' = \frac{h_{2max}}{F} = \frac{12,5}{2,5\times50} = 0,10$ (au niveau du récepteur).
 - \Rightarrow L₁ est la pupille d'entrée, de diamètre Ø₁.
 - \Rightarrow Le diamètre de la pupille de sortie de la lunette est $2h_{2_{max}} = \frac{\emptyset_1}{G} = 10$ mm.
- 3. $\emptyset_{Airy} = \frac{1.22\lambda}{\sin \alpha'_m} = 7 \,\mu\text{m} < \text{pixel} \Rightarrow \text{les pixels limitent la résolution}$

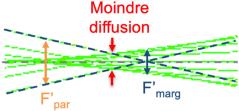
B. Aberration sphérique du 3ème ordre

- 1. Théorème de Gouy : $n'_t\Delta'_t = \sum n'_i\Delta'_i$ avec ici tous les indices = 1 (air) \Rightarrow on somme les contributions de chaque optique *séparément*, considérant qu'elles sont éclairées par une onde parfaite dans la configuration (conjugaison, ouverture...) pour laquelle elles travaillent.
- 2. L_1 : lentille plan-sphérique convergente \Rightarrow les rayons réels sont plus déviés que les rayons paraxiaux \Rightarrow onde réelle en avance de phase $\Delta'_1 \geq 0$ (avec les conventions de signe habituelles)
 - \rightarrow $\Delta'_{1_{max}}$ = 31 µm au bord de la pupille (h₁ = $\emptyset_1/2$) avec les formules données en annexe L_2 : lentille plan-sphérique divergente \Rightarrow les rayons réels sont plus déviés que les rayons paraxiaux \Rightarrow onde réelle en retard de phase $\Delta'_2 \leq 0$.
 - \rightarrow $\Delta'_{2_{max}}$ = -49 µm au bord de la pupille (h_{2max} = h_{1max}/2,5) NB : principe du retour inverse, on peut utiliser la même expression de Δ en $\infty \rightarrow F'$ ou en $F' \rightarrow \infty$, avec face plane vers l' ∞ ici.



- 3. L'écart normal aberrant du système dans son ensemble est $\Delta_{\max} = {\Delta'}_{1_{max}} + {\Delta'}_{2_{max}} = -18 \ \mu m$ (soit $-30 \ \lambda$) au bord de la pupille (aberration sphérique du $3^{\text{ème}}$ ordre sur-corrigée).
- 4. (cf. démo. cours & TD) $\sigma_{\Delta} = \frac{4\Delta_{max}}{6\sqrt{5}} \cong 9 \lambda$ (mise au pt paraxiale) $\gg 0.07\lambda \Rightarrow$ critère de Maréchal non vérifié : la réponse percussionnelle est <u>très</u> différente d'une tache d'Airy, et une description géométrique en est donc suffisante.
- 5. $u = \frac{\alpha'}{\alpha'_m}$ avec $\alpha' = \frac{h_2}{F'_r} = \frac{h_1}{2.5 \times F'_r} \Rightarrow$ écart normal d'aberration sphérique de la forme $\Delta'(\alpha', \varphi) = \Delta_{\max} \frac{\alpha'^4}{\alpha'_m^4}$.

- 6. Relations de Nijboer avec $\frac{\partial \Delta}{\partial \varphi} = 0 \Rightarrow$ équation d'un disque de rayon max $\frac{4\Delta_{max}}{\alpha'_m \times \cos \alpha'_m} \cong 710 \ \mu\text{m} \gg$ taille des pixels : défaut rédhibitoire !
- 7. Au foyer de moindre diffusion, le rayon est divisé par 4 ⇒ la tache reste très supérieure aux pixels.
- 8. $dy_T'(u)$: impact des rayons du plan tangentiel ($\varphi = 0 180^\circ$) par rapport à l'image paraxiale, dans le plan image paraxial, en fonction de la hauteur d'impact normalisée dans la pupille u.
 - courbe b. mise au point paraxiale $(dy'_T(u))$ tangent à l'axe des abscisses : valeurs proches de 0 pour les rayons paraxiaux);



Tracé des rayons autour des foyers (aberration sphérique sur-corrigée)

- courbe c: mise au point au foyer de moindre diffusion (étalement minimal des rayons ⇒ taille de tache minimale);
- courbe d : mise au point au foyer marginal $((dy'_T(u=1)=0);$
- courbe a : défaut de mise au point positif (hors de la caustique)
- 9. Compensation rigoureuse de l'aberration sphérique de L_1 par celle de L_2 si ${\Delta'}_{2\,\text{max}} = -31\,\mu\text{m}$ $\Leftrightarrow n_2 = 1,741 \ (\sim \text{SF}10)$ (et donc un rayon de courbure de la face concave de L_2 $R_2 = -17,8$ mm). Le choix d'un verre de dispersion différente de celui de L_1 peut permettre la correction du chromatisme.
- 10. Comparaison des différentes configurations possibles : il faut garder L_1 dans le bon sens, car c'est l'optique la plus aberrante ; L_2 doit apporter une aberration assez forte pour la compenser, malgré sa focale plus faible ($\Delta \propto f'$ à ouverture numérique donnée). On ne trouve aucun verre réaliste pour L_2 dans les autres configurations.

	Aberration Sphérique (L ₁ & L ₂ en BK7)	<u>Correction</u> (L ₁ : BK7 / L ₂ : ?)
L ₁	Δ = -18 μm	n ₁ = 1,52 (BK7) n ₂ = 1,74 (SF10)
L ₁	Δ = + 19 μm	n ₁ = 1,52 n ₂ = 1,34
	Δ = + 73 μm	n ₁ = 1,52 n ₂ = 1,27
	Δ = + 109 μm	n ₁ = 1,52 n ₂ = 1,18