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Memory

physical memory of a computer is a huge array of
M bytes,
CPU can access (read/write) using physical
addresses 0, 1, 2, etc.
M is huge (for instance, M = 234 for a 16 Gio
memory)

M − 1
M − 2

...
3
2
1
0
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Virtual memory

No direct access to the memory
The hardware provides a mechanism of virtual memory
MMU (pour Memory Management Unit)

CPU MMU
virtual adr physical adr.

memory

...

Translate virtual addresses (in 0,1, . . . ,N − 1)
into physical addresses (in 0,1, . . . ,M − 1)
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Pages

the MMU is typically programmed by the OS
Virtual memory is organized in pages (for instance of size 4 ko each)
each page is either

non allocated
allocated in physical memory (and the MMU knows the place)
allocated on the disk

The OS keeps a table with the current status of all pages
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Example

8 pages
2 non allocated
4 in physical memory
2 on the disk

null

null

pages

memory

disk
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How does it work

when the CPU want to read/write a virtual address
the MMU translates it to a physical address

it works and the instruction is executed
it fails and

1 an interruption is raised (page fault)
2 the page is installed into the physical memory

(possibly by sending back another page on the disk)
3 the execution starts again on the same instruction

the OS has a table of pages for each process
each program think it can use all the (virtual) memory for itself
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Avantages

it makes life easier for
the linker
(code is always at the same address ,
for instance 0x400000 for Linux 64 bits)
loading a program
(keep the pages on the disk)
pages sharing between different processus
(same physical page = different virtual pages)
memory allocation
(physical pages do not need to be consecutive)
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More on virtual memory

if you want to know more, in particular on the mechanism for address
translation, see

Randal E. Bryant et David R. O’Hallaron
Computer Systems : A Programmer’s Perspective
chapitre 9 Virtual Memory
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Automatic memory management
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Garbage Collection (GC)
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Static allocation

Easy to allocate static memory
in the segment .data (explicitely initialized)
in the segment .bss (implicitely initialized with zero)
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Dynamic allocation

Programs usually allocate memory dynamically
implicitely, for certain language constructions
(objects, closure, etc.)
explicitely, to store data with size not known at compile time
(arrays, lists, trees, etc.)

It is also necessary to be able to free the memory

C. Paulin (Université Paris-Saclay) Compilers 2025–26 341 / 402



Heap

dynamic allocation usually in the heap
immediately above static data
a variable brk (program break ) of the system
contains the address of the top of the heap
(first free address)

stack

↓

brk→ ↑

heap

.bss
.data
.text
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Naive allocation

We can allocate memory by just increasing the variable brk

a system call

void * sbrk ( i n t n ) ;

increments brk by n bytes and returns the old address (base of the
allocated block)
we decrements brk using a negative n

corresponds to using the heap as a stack
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Memory management

we want a memory management system which allocates and releases
memory blocks in an arbitrary order
the block release can be

explicitely written in the program
example : C library malloc
automatically done by an external program
it is called GC (Garbage Collector)
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Objective

using sbrk, one can provide two operations

void * mal loc ( i n t s ize ) ;
/ / r e tu rns a p o i n t e r to a new block o f s ize
/ / a t l e a s t s i ze bytes , or NULL i f i t f a i l s

and

void f r ee ( void * p t r ) ;
/ / f r ee the block a t the address p t r
/ / ( needs to be a block p rev ious l y a l l o c a t e d by mal loc
/ / and not yet released ,
/ / o therwise the behavior i s not def ined )
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Rules

we do not know which sequence of malloc/ free will be used
malloc should answer immediately
if malloc or free uses other structures, they are also allocated on the
heap
a block returned by malloc is aligned on 8 bytes (64 bits architecture)
a block allocated will not be moved
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First idea

blocks, allocated or free , are contiguous in the memory
they are linked together
given the address of a block, we can compute the address of next block
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Implementation

a header contains the full size of the block plus its status (allocated / free)
then we have n bytes for the block itself
we possibly add extra bytes in order for the total size to be a multiple of 8

header contents of the block filling
(4 bytes) (n bytes) (optional)

↑
address returned by malloc
(aligned on 8 bytes)
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Example

allocated free allocated free
12 bytes 28 bytes 16 bytes 20 bytes

square = 4 bytes
blue = header / red = allocated / gray = filling / white = free
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Trick

because the full size is a multiple of 8, the size ends with 3 zeros
use one bit to store the status (allocated / free)
on the previous example

bit 5 4 3 2 1 0
. . . 0 1 0 0 0 1 size 16, allocated
. . . 1 0 0 0 0 0 size 32, free
. . . 0 1 1 0 0 1 size 24, allocated
. . . 0 1 1 0 0 0 size 24, free
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malloc(n)

we scan the list of blocks looking for a sufficiently large free block
if we find one

possibly split it in 2 blocks (one allocated + one free)
return the allocated block

otherwise,
allocate a new fresh block at the end of the list, with sbrk
return the new block
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Strategy

to find a free block, we can adopt different strategies :
take the first one large enough (first fit)
take the first one large enough starting from the position of last search
(next fit)
choose a block large enough of minimal size (best fit)
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free(p)

it is enough to change the status of block p (from allocated to free)

C. Paulin (Université Paris-Saclay) Compilers 2025–26 353 / 402



Problem

the memory get fragmented : smaller and smaller blocks
⇒ some memory is lost
⇒ searching free blocks becomes expansive

we must compact the memory
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Second idea

when a block is released, look if it can be merged with a block after or
before (coalescing)
it is easy to check if the next block is free
and to merge them (just add the size of the next block to the size of the
current block)
it is more complex to merge with the previous block
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Third idea

copy the header at the end of each block
idea due to Knuth, called boundary tags
blocks are doubly linked
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Fusion

When a block p is released, we look at the previous and following blocks
4 possibles situations

allocated | p | allocated : do nothing
allocated | p | free : merge with the following block
free | p | allocated : merge with the previous block
free | p | free : merge the three blocks

invariant there are never two consecutive free blocks
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Trick

duplicating the header takes up space
instead we could

duplicate the header only in the free blocks
use one bit of the header of an allocated block to store if the previous
block is free
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Fourth idea

Traversing all blocks is expansive
We can link together the free blocks (free list)
We use the content of the bloc to store 2 pointers (we need a minimal
size for a block)
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Releasing a block

when we release a block we have different choices to insert it in the free list
at the beginning
sort the free list by increasing base addresses
sort the free list by increasing block sizes
etc.
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Fifth idea

Traversing the free list is still expansive if we have many small blocks
We may use several free lists organized by size
example : a list of free blocks of size between 2n and 2n+1 − 1, for each n

C. Paulin (Université Paris-Saclay) Compilers 2025–26 361 / 402



Conclusion

The operations malloc/free are more subtle than it seems
(malloc.c in Linux take more than 5 000 lines of code)
many parameters, many possible strategies
many articles on the subject, usually using empirical evaluation
[see for instance Wilson, Johnstone, Neely, Boles.
Dynamic Storage Allocation : A Survey and Critical Review, 1995]
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Reading

C code using these ideas in
Brian W. Kernighan et Dennis M. Ritchie
The C language
Randal E. Bryant et David R. O’Hallaron
Computer Systems : A Programmer’s Perspective
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Memory allocation
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GC

many languages (Lisp, OCaml, Python, Java, etc.) use an automatic
mechanism to release memory blocks,
it is called GC for Garbage Collector
in french, GC can be translated to « ramasse-miettes » or « glâneur de
cellules »
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GC

principle : a space allocated on the heap for a data (closure, object, records,
array, constructor, etc.) which is not reachable from a program variable can be
reclaimed and reused for other data

difficulty : in general, we cannot decide statically (at compile time) at what
time a data is no more reachable

⇒ GC is part of the executable code
either as part of the interpretor when the language is interpreted
or in a library that will be linked with the compiled code (runtime)
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Vocabulary

we call block an elementary portion of the heap allocated by the program
a block can contain one ore more pointers to other blocks but also other data
(characters, integers, pointers outside the heap, etc.)

at each execution point in the program, we call root an active variable (global
variable or local variable in a stack frame or in a register)

a block is alive if it is reachable from a root i.e. there exists a sequence of
pointers from the root to the block

C. Paulin (Université Paris-Saclay) Compilers 2025–26 367 / 402



Example

l e t x , y =
l e t l = [ 1 ; 2 ; 3 ] in
( L i s t . f i l t e r even l , L i s t . t l l )

. . .

roots heap

1

2

3

2

x
y
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Reference counting

we consider a first solution, called reference counting

the idea is that each block contains the number of pointers pointing to its
address (coming from roots or other blocks)

we update the counter when we do an assignment
(explicit or implicit as in 1::x)
b.f ← p ;
we need

to decrease the counter of the block corresponding to the old pointer b.f ;
if we reach 0, release the block
to increase the counter of the block p

when we free a block b, we decrease the counters of all blocks on which b
was pointing
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Reference counting

Problems :
updating counters is expensive
cycles in data-structures leads to blocks which cannot be recovered

r 34 55

89 ⊥

1 1

1

Reference counting is rarely used in GC (exceptions : Perl, Python) but
sometimes explicitely in programs (C++, Rust,...)
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Mark & Sweep

Another solution, more effective is called mark and sweep

Two phases :
1 mark all blocks reachable from roots

(depth-first course, using 1 bit for the mark in each block)
2 consider all blocks and

release unmarked blocks
(put them back in the free list)
remove mark from others

when doing allocation, if the free list is empty then run GC
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Marking

Marking uses a depth-first search

browse(x) =
if x is a pointer on the heap, not yet marked

mark x
for each field f of x

browse(x .f )

for each root r
browse(r )
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Sweep

Sweeping releases unmarked blocks

for each block x
if x is marked

remove the mark of x
otherwise

add x to the free list
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Example

mark

roots heap

1

2

3

2

x
y

sweep

roots

freelist

heap

2

3

2

x
y
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Problem

Marking is a recursive algorithm, which uses a stack proportional to the depth
of the heap (possibly as large as the heap itself)

it is possible to use an explicit stack or the structure itself to encode the stack
(pointer reversal)
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Other problem

The program has to stop during a full Mark and Sweep, it takes time
To avoid that, we can mark the blocks incrementally while doing other
operations
it is called incremental GC
we need to be careful to preserve invariants for correctness (only release
non-reachable blocks)

several strategies when doing a write or a read operation to change the
marks of involved blocks
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Incremental mark and sweep

Instead of a mark, we use 3 colors :
Blocks can be

white, candidate for release
black, reachable from roots, no pointer to white block
grey, reachable from roots, the fields have not yet been examined

initialy the roots are grey, the other blocks are white
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Incremental mark and sweep

while there is a grey block
choose a grey block x
color the block in black
for each field f of x

if x .f points to a white block
color the block in grey

roots heap

1

2

3

2

x
y

We can run this algorithm in parallel
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Incremental mark and sweep

when there is no more grey block
black blocks are reachable from roots
white blocks are not
because a black block does not point towards a white block

1 we release the white blocks
2 we color black blocks in white
3 we color the roots in grey
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Mark and Sweep

Good solution for identifying unused blocks
(in particular, unused cycles remains white)

does not address the problem of fragmentation
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GC with copy

Another solution, called stop and copy

the idea is to separate the heap in 2 parts
1 use one part for linear allocation
2 when this part is full, copy what is reachable in the second part
3 exchange the role of the 2 parts

immediate benefits :
allocating is cheap (addition + comparaison)
no fragmentation
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Example

origine

1

2

3

2

roots destination
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Example

origine

1

2

3

2

roots destination

2

2

3
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Cheney’s algorithm (1970)

copy using a constant additional space

principle : breadth-first search using
destination space to store the pointers that need to be visited
source space to store pointers already visited :

when a block is moved from origin to destination, its first field is used to store
the address of the destination
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Cheney’s algorithm

function which copies the block at the address p, if necessary

next is the first free address in destination

move(p) =
if p points in origin

if p.f1 points in destination
return p.f1

else
for each field fi of p
next.fi ← p.fi

p.f1 ← next
next← next + size of block p
return p.f1

else
return p
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Cheney Algorithm

we start copying, starting from the root

Initially
scan← next← beginning of destination

foreach root r
r ← move(r )

while scan < next
for each field fi of scan
scan.fi ← move(scan.fi )

scan← scan + size of block scan

org

...

roots dst

...

←scan

←next

In destination, the zone between scan and next are blocks with fields
not yet examined

both scan and next increase during the procedure !
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Cheney algorithm

this algorithm is elegant but still has a drawback :
the locality of data is changed during the copy i.e. blocks which were close
before the copy, will not necessarily be after

locality is important for memory cache

its possible to change Cheney algorithm for mixing depth-first and
breadth-first search
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Generational GC

in many programs, the values have a very short lifetime,
values which are still there after several collections, will probably be there for
a long time

idea : organise the heap with different generations
G0 contains more recent values, do frequent collections on them
G1 contains older values, needs less frequent collections
etc.

in practice, there are difficulties to identify roots for each generation, in
particular an assignment might introduce a pointer from G1 to G0 . . .
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More on this

The Garbage Collection Handbook
Richard Jones, Antony Hosking, Eliot Moss
CRC Press, 2023

other algorithms
implementation details
parallel and concurrent GC
real-time GC
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OCaml GC

OCaml GC uses 2 generations
a minor GC (young values) : Stop & Copy
a major GC (old values) : incremental Mark & Sweep

destination zone of minor GC is the major GC zone

Understanding GC requirements, we explain data representation as chosen in
OCaml
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Value

an Ocaml value can be
an integer, representing a value of type int or a constant constructor
(true, false, [], etc.)
a pointer, an address in or outside the heap

Arguments are always passed as values in OCaml
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Block

a pointer in the heap in OCaml points to a block of size n + 1 words
(a word = 8 bytes on a 64 bits architecture)
the first word is the header it contains the size n of the bloc, its nature and
two bits used by the GC

63 . . . 10 9 8 7 . . . 0
size color nature

(warning : not the same header as for malloc)
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size of a block

the size of the block is encoded on 54 bits, we have consequentely

# Sys . max_array_length ; ;
− : i n t = 18014398509481983

a string is represented in a compact way (8 characters stored in a word),
consequentely

# Sys . max_st r ing_ length ; ;
− : i n t = 144115188075855863
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Nature of the block

The nature of a block is an integer encoded on 8 bits (0..255) ;

it allows the distinction between
floating point number
string
object
closure
the general case of a structure block : record, array, tuple, constructor
in the case of a constructor, the integer indicates the constructor
(for pattern-matching)
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Integers and pointers

When the GC looks at a block (for marking or copying), it must distinguish
between integers and pointers

difficulty : the compiler cannot indicate to the GC which fields will be pointers
because of polymorphic functions

l e t f x = ( x , x )

f 42 ( * a b lock which conta ins 2 in tege rs * )

f [ 4 2 ] ( * a b lock which conta ins 2 po in te r s * )
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Solution

An OCaml value is
either a pointer, which is a pair number because of alignments constraints
or an odd integer 2n + 1, representing the value n

GC tests the least significant bit in order to determine if a field is a pointer
or not

consequence : OCaml integers are signed 63 bits integers
arithmetic becomes a bit more complicated
(the standard library contains a module Int64)
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Example

the value 1 :: 2 :: 3 :: [] is represented by

3 5 7 1
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Other solution

to avoid wasting a bit, its possible to consider as a pointer everything
which looks like a pointer
it is

correct i.e. no reachable block will be released
but not complete i.e. some unreachable blocks will not be released

it is called conservative GC

example : Boehm–Demers–Weiser GC for C and C++
(see https://www.hboehm.info/gc/)
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Yet another solution

allocate everything in the heap, so any value is a pointer
choice made by Python for instance
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Conclusion

understanding programming languages is essential
to be a better programmer

understanding the execution model
memory organisation : stack, heap
what is an object, a closure . . .

be able to program in different languages

doing research in computer science
propose new languages

domain specific languages
languages better suited for modern architecture, security. . .

design tools for languages
static analysis, verification
compilers (parallel architecture, Just in Time compiling . . .)
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Compilers

when compiling, we use
several phases (typing, computing, allocating. . .)
many different (advanced) technics : formal languages, semantics,
execution models. . .

some of these technics are reusable in other contexts :
linguistics
proofs using computers (proof assistants, program verification)
database requests
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Evaluation

The three practical assigments must submitted on ecampus before
Tuesday October 21st 14 :00

Code + a small report explaining what has been done

Oral exam on Thursday October 23rd (choose your 30mn slot on
ecampus)

some theoretical questions + review of the project
you can use your course notes
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