Programming Languages, semantics, compilers

Automatic Memory Management
C. Paulin (courtesy of J.-C. Filliatre)
M1 MPRI 2025-26

e Automatic Memory Management
@ Virtual memory
@ Memory allocation
@ Garbage Collection (GC)

C. Paulin (Université Paris-Saclay) Compilers

331/402

M—A1
M-2

@ physical memory of a computer is a huge array of :
M bytes, 3
@ CPU can access (read/write) using physical 2
addresses 0, 1, 2, etc. 1
@ M is huge (for instance, M = 234 for a 16 Gio 0

memory)

C. Paulin (Université Paris-Saclay) Compilers 332/402

Virtual memory

No direct access to the memory

The hardware provides a mechanism of virtual memory
MMU (pour Memory Management Unit)

memory

i hysical adr.
CPU virtual adr pnhy

Translate virtual addresses (in 0,1,...,N —1)
into physical addresses (in0,1,..., M —1)

C. Paulin (Université Paris-Saclay)

Compilers

333/402

the MMU is typically programmed by the OS
Virtual memory is organized in pages (for instance of size 4 ko each)
each page is either

@ non allocated
@ allocated in physical memory (and the MMU knows the place)
@ allocated on the disk

The OS keeps a table with the current status of all pages

C. Paulin (Université Paris-Saclay) Compilers 334/402

memory
pages
8 pages “Eﬂ
@ 2 non allocated «
@ 4 in physical memory :) = disk
@ 2 on the disk mull 1~
el \\\\A
(\\\\\\\
RN

335/402

C. Paulin (Université Paris-Saclay) Compilers

How does it work

when the CPU want to read/write a virtual address
the MMU translates it to a physical address

@ it works and the instruction is executed

@ it fails and

@ an interruption is raised (page fault)

@ the page is installed into the physical memory
(possibly by sending back another page on the disk)

@ the execution starts again on the same instruction

@ the OS has a table of pages for each process
@ each program think it can use all the (virtual) memory for itself

C. Paulin (Université Paris-Saclay) Compilers 2025-26 336/402

it makes life easier for

@ the linker
(code is always at the same address ,
for instance 0x400000 for Linux 64 bits)

@ loading a program
(keep the pages on the disk)
@ pages sharing between different processus
(same physical page = different virtual pages)
@ memory allocation
(physical pages do not need to be consecutive)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 337/402

More on virtual memory

if you want to know more, in particular on the mechanism for address
translation, see

Randal E. Bryant et David R. O’Hallaron

Computer Systems : A Programmer’s Perspective

chapitre 9 Virtual Memory

C. Paulin (Université Paris-Saclay) Compilers 338/402

Automatic memory management

0 Automatic Memory Management

@ Memory allocation

C. Paulin (Université Paris-Saclay) Compilers 339/402

Static allocation

Easy to allocate static memory
@ in the segment . data (explicitely initialized)
@ in the segment .bss (implicitely initialized with zero)

C. Paulin (Université Paris-Saclay) Compilers 340/402

Dynamic allocation

Programs usually allocate memory dynamically

@ implicitely, for certain language constructions
(objects, closure, etc.)

@ explicitely, to store data with size not known at compile time
(arrays, lists, trees, etc.)

It is also necessary to be able to free the memory

C. Paulin (Université Paris-Saclay) Compilers 341/402

stack
1
@ dynamic allocation usually in the heap
@ immediately above static data 1
brk—

@ a variable brk (program break) of the system
contains the address of the top of the heap heap
(first free address)

.bss
.data
.text

C. Paulin (Université Paris-Saclay)

Compilers

342/402

Naive allocation

@ We can allocate memory by just increasing the variable brk
@ a system call

void =«sbrk(int n);

increments brk by n bytes and returns the old address (base of the
allocated block)
@ we decrements brk using a negative n

@ corresponds to using the heap as a stack

C. Paulin (Université Paris-Saclay) Compilers 343/402

Memory management

@ we want a memory management system which allocates and releases
memory blocks in an arbitrary order
@ the block release can be
o explicitely written in the program
example : C library malloc
o automatically done by an external program
it is called GC (Garbage Collector)

C. Paulin (Université Paris-Saclay) Compilers 344/402

using sbrk, one can provide two operations

void =malloc(int size);
// returns a pointer to a new block of size
// at least size bytes, or NULL if it fails

and

void free(void =ptr);
// free the block at the address ptr
// (needs to be a block previously allocated by malloc
// and not yet released,
// otherwise the behavior is not defined)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 345/402

Rules

@ we do not know which sequence of malloc/ free will be used
@ malloc should answer immediately

@ ifmalloc or free uses other structures, they are also allocated on the
heap

@ a block returned by malloc is aligned on 8 bytes (64 bits architecture)
@ a block allocated will not be moved

C. Paulin (Université Paris-Saclay) Compilers 346/402

@ blocks, allocated or free , are contiguous in the memory
@ they are linked together
@ given the address of a block, we can compute the address of next block

C. Paulin (Université Paris-Saclay) Compilers 347/402

Implementation

@ a header contains the full size of the block plus its status (allocated / free)
@ then we have n bytes for the block itself
@ we possibly add extra bytes in order for the total size to be a multiple of 8

header contents of the block filling
(4 bytes) (n bytes) (optional)
/l\
address returned by malloc
(aligned on 8 bytes)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 348/402

allocated free allocated free
12 bytes 28 bytes 16 bytes 20 bytes

@ square = 4 bytes
@ blue = header / red = allocated / gray = filling / white = free

C. Paulin (Université Paris-Saclay) 2025-26 349/402

@ because the full size is a multiple of 8, the size ends with 3 zeros
@ use one bit to store the status (allocated / free)
@ on the previous example

bit 5 4 3 \ 2 1 0
0 1 0|0 O 1 wsize 16, allocated
1 0 0|0 O O size32,free
0 1 1]0 0 1 size?24, allocated
0 1 110 0 O size?24,free

C. Paulin (Université Paris-Saclay) Compilers 350/402

malloc (N)

we scan the list of blocks looking for a sufficiently large free block
@ if we find one
@ possibly split it in 2 blocks (one allocated + one free)
@ return the allocated block
@ otherwise,

o allocate a new fresh block at the end of the list, with sbrk
@ return the new block

C. Paulin (Université Paris-Saclay) Compilers 351/402

to find a free block, we can adopt different strategies :
@ take the first one large enough (first fit)

@ take the first one large enough starting from the position of last search
(next fit)

@ choose a block large enough of minimal size (best fit)

C. Paulin (Université Paris-Saclay) Compilers 352/402

free (P)

it is enough to change the status of block p (from allocated to free)

C. Paulin (Université Paris-Saclay) Compilers 353/402

the memory get fragmented : smaller and smaller blocks
= some memory is lost
= searching free blocks becomes expansive
we must compact the memory

C. Paulin (Université Paris-Saclay) Compilers 354/402

@ when a block is released, look if it can be merged with a block after or
before (coalescing)

@ it is easy to check if the next block is free
and to merge them (just add the size of the next block to the size of the
current block)

@ it is more complex to merge with the previous block

C. Paulin (Université Paris-Saclay) Compilers 355/402

Third idea

@ copy the header at the end of each block
@ idea due to Knuth, called boundary tags
@ blocks are doubly linked

e hneamnmnn hrT. & EOEEEEE"

C. Paulin (Université Paris-Saclay) Compilers 356/402

Fusion

When a block p is released, we look at the previous and following blocks
4 possibles situations

@ allocated | p | allocated : do nothing
@ allocated | p | free : merge with the following block
o free | p | allocated : merge with the previous block
o free |p|free :merge the three blocks

invariant there are never two consecutive free blocks

C. Paulin (Université Paris-Saclay) Compilers 2025-26 357/402

duplicating the header takes up space
instead we could

@ duplicate the header only in the free blocks

@ use one bit of the header of an allocated block to store if the previous
block is free

C. Paulin (Université Paris-Saclay) Compilers 358/402

@ Traversing all blocks is expansive
@ We can link together the free blocks (free list)

@ We use the content of the bloc to store 2 pointers (we need a minimal
size for a block)

C. Paulin (Université Paris-Saclay) Compilers 359/402

Releasing a block

when we release a block we have different choices to insert it in the free list
@ at the beginning
@ sort the free list by increasing base addresses
@ sort the free list by increasing block sizes
@ etc.

C. Paulin (Université Paris-Saclay) Compilers 360/402

Fifth idea

@ Traversing the free list is still expansive if we have many small blocks
@ We may use several free lists organized by size
@ example : a list of free blocks of size between 2" and 2"t! — 1, for each n

C. Paulin (Université Paris-Saclay) Compilers 361/402

Conclusion

@ The operations malloc/free are more subtle than it seems
(malloc.c in Linux take more than 5000 lines of code)

@ many parameters, many possible strategies
@ many articles on the subject, usually using empirical evaluation

@ [see for instance Wilson, Johnstone, Neely, Boles.
Dynamic Storage Allocation : A Survey and Critical Review, 1995]

C. Paulin (Université Paris-Saclay) Compilers 2025-26 362/402

C code using these ideas in

@ Brian W. Kernighan et Dennis M. Ritchie
The C language

@ Randal E. Bryant et David R. O’Hallaron
Computer Systems : A Programmer’s Perspective

C. Paulin (Université Paris-Saclay) Compilers 363/402

Automatic memory management

0 Automatic Memory Management

@ Garbage Collection (GC)

C. Paulin (Université Paris-Saclay) Compilers 364/402

@ many languages (Lisp, OCaml, Python, Java, etc.) use an automatic
mechanism to release memory blocks,

@ itis called GC for Garbage Collector

@ in french, GC can be translated to « ramasse-miettes » or « glaneur de
cellules »

C. Paulin (Université Paris-Saclay) Compilers 365/402

principle : a space allocated on the heap for a data (closure, object, records,
array, constructor, etc.) which is not reachable from a program variable can be
reclaimed and reused for other data

difficulty : in general, we cannot decide statically (at compile time) at what
time a data is no more reachable

= GC is part of the executable code
@ either as part of the interpretor when the language is interpreted
@ or in a library that will be linked with the compiled code (runtime)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 366/402

Vocabulary

we call block an elementary portion of the heap allocated by the program
a block can contain one ore more pointers to other blocks but also other data
(characters, integers, pointers outside the heap, etc.)

at each execution point in the program, we call root an active variable (global
variable or local variable in a stack frame or in a register)

a block is alive if it is reachable from a root i.e. there exists a sequence of
pointers from the root to the block

C. Paulin (Université Paris-Saclay) Compilers 2025-26 367/402

roots heap
X
y
let x, y =
let | = [1; 2; 3] in

(List.filter even |, List.tl I)

L[] [o]wlete olte]

C. Paulin (Université Paris-Saclay) Compilers 368/402

Reference counting

we consider a first solution, called reference counting

the idea is that each block contains the number of pointers pointing to its
address (coming from roots or other blocks)

we update the counter when we do an assignment
(explicit or implicit as in 1: : x)

b.f < p;

we need

@ to decrease the counter of the block corresponding to the old pointer b.f;
if we reach 0, release the block

@ to increase the counter of the block p

when we free a block b, we decrease the counters of all blocks on which b
was pointing

C. Paulin (Université Paris-Saclay) Compilers 2025-26 369/402

Reference counting

Problems :
@ updating counters is expensive
@ cycles in data-structures leads to blocks which cannot be recovered

1

Reference counting is rarely used in GC (exceptions : Perl, Python) but
sometimes explicitely in programs (C++, Rust,...)

C. Paulin (Université Paris-Saclay) Compilers 370/402

Mark & Sweep

Another solution, more effective is called mark and sweep

Two phases :
@ mark all blocks reachable from roots
(depth-first course, using 1 bit for the mark in each block)
@ consider all blocks and

o release unmarked blocks
(put them back in the free list)
e remove mark from others

when doing allocation, if the free list is empty then run GC

C. Paulin (Université Paris-Saclay) Compilers 371/402

Marking uses a depth-first search

browse(x) =
if x is a pointer on the heap, not yet marked
mark x
for each field f of x
browse(x.f)

for each root r
browse(r)

C. Paulin (Université Paris-Saclay) Compilers

372/402

Sweeping releases unmarked blocks

for each block x
if x is marked
remove the mark of x
otherwise
add x to the free list

C. Paulin (Université Paris-Saclay) Compilers 373/402

Example

mark swee

roots heap roots heap

X | o 1 X
ME=) y
) freelist
hd
3
[]
2

C. Paulin (Université Paris-Saclay) Compilers 374/402

Marking is a recursive algorithm, which uses a stack proportional to the depth
of the heap (possibly as large as the heap itself)

it is possible to use an explicit stack or the structure itself to encode the stack
(pointer reversal)

C. Paulin (Université Paris-Saclay) Compilers 375/402

Other problem

@ The program has to stop during a full Mark and Sweep, it takes time

@ To avoid that, we can mark the blocks incrementally while doing other
operations

@ itis called incremental GC

@ we need to be careful to preserve invariants for correctness (only release
non-reachable blocks)
@ several strategies when doing a write or a read operation to change the
marks of involved blocks

C. Paulin (Université Paris-Saclay) Compilers 2025-26 376/402

Incremental mark and sweep

@ Instead of a mark, we use 3 colors :
@ Blocks can be

e white, candidate for release
@ black, reachable from roots, no pointer to white block
e grey, reachable from roots, the fields have not yet been examined

initialy the roots are grey, the other blocks are white

C. Paulin (Université Paris-Saclay) Compilers 377/402

Incremental mark and sweep

roots

heap
K3

 while there is a grey block
choose a grey block x
color the block in black
for each field f of x
if x.f points to a white block
color the block in grey

We can run this algorithm in parallel

C. Paulin (Université Paris-Saclay) Compilers 378/402

Incremental mark and sweep

when there is no more grey block
@ black blocks are reachable from roots
@ white blocks are not
because a black block does not point towards a white block
@ we release the white blocks
@ we color black blocks in white
@ we color the roots in grey

C. Paulin (Université Paris-Saclay) Compilers 379/402

Mark and Sweep

Good solution for identifying unused blocks
(in particular, unused cycles remains white)

does not address the problem of fragmentation

C. Paulin (Université Paris-Saclay) Compilers

380/402

GC with copy

Another solution, called stop and copy

the idea is to separate the heap in 2 parts
@ use one part for linear allocation
@ when this part is full, copy what is reachable in the second part
@ exchange the role of the 2 parts

immediate benefits :
@ allocating is cheap (addition + comparaison)
@ no fragmentation

C. Paulin (Université Paris-Saclay) Compilers 381/402

origine roots destination

\

C. Paulin (Université Paris-Saclay) Compilers 382/402

origine roots destination

'\

Lo |wlte] [o]v)]

[a[é] [e]™] [o]wlte|oktelr]

C. Paulin (Université Paris-Saclay) Compilers 383/402

Cheney’s algorithm (1970)

copy using a constant additional space

principle : breadth-first search using
@ destination space to store the pointers that need to be visited

@ source space to store pointers already visited :

@ when a block is moved from origin to destination, its first field is used to store
the address of the destination

C. Paulin (Université Paris-Saclay) Compilers 384/402

Cheney’s algorithm

function which copies the block at the address p, if necessary

next is the first free address in destination

move(p) =
if p points in origin
if p.f; points in destination
return p.f;
else
for each field f; of p
next.fi < p.f;
p.fi + next

next < next + size of block p
return p.f;
else
return p

C. Paulin (Université Paris-Saclay)

Compilers

385/402

Cheney Algorithm

we start copying, starting from the root

Initially
scan < next < beginning of destination ©°r& roots dst
<—scan
foreach root r
<next

r < move(r)
while scan < next
for each field f; of scan
scan.f; + move(scan.f)
scan < scan + size of block scan

In destination, the zone between scan and next are blocks with fields
not yet examined

both scan and next increase during the procedure !

C. Paulin (Université Paris-Saclay) Compilers 2025-26 386/402

Cheney algorithm

this algorithm is elegant but still has a drawback :
the locality of data is changed during the copy i.e. blocks which were close
before the copy, will not necessarily be after

locality is important for memory cache

its possible to change Cheney algorithm for mixing depth-first and
breadth-first search

C. Paulin (Université Paris-Saclay) Compilers 2025-26 387/402

Generational GC

in many programs, the values have a very short lifetime,
values which are still there after several collections, will probably be there for
a long time

idea : organise the heap with different generations
@ Gy contains more recent values, do frequent collections on them
@ G contains older values, needs less frequent collections
@ efc.

in practice, there are difficulties to identify roots for each generation, in
particular an assignment might introduce a pointer from G; to Gy .. .

C. Paulin (Université Paris-Saclay) Compilers 2025-26 388/402

The Garbage Collection Handbook
Richard Jones, Antony Hosking, Eliot Moss
CRC Press, 2023

@ other algorithms

@ implementation details

@ parallel and concurrent GC
@ real-time GC

C. Paulin (Université Paris-Saclay) Compilers 389/402

OCaml GC

OCaml GC uses 2 generations
@ a minor GC (young values) : Stop & Copy
@ a major GC (old values) : incremental Mark & Sweep

destination zone of minor GC is the major GC zone

Understanding GC requirements, we explain data representation as chosen in
OCami

C. Paulin (Université Paris-Saclay) Compilers

390/402

Value

an Ocaml value can be

@ an integer, representing a value of type int or a constant constructor
(true, false, [], etc.)

@ a pointer, an address in or outside the heap
Arguments are always passed as values in OCaml

C. Paulin (Université Paris-Saclay) Compilers 391/402

@ a pointer in the heap in OCaml points to a block of size n + 1 words
(a word = 8 bytes on a 64 bits architecture)

@ the first word is the header it contains the size n of the bloc, its nature and
two bits used by the GC

63 ... 10 9 8 7 ... O
] size | color [nature |

(warning : not the same header as for malloc)

C. Paulin (Université Paris-Saclay) Compilers 392/402

size of a block

the size of the block is encoded on 54 bits, we have consequentely

Sys.max_array_length;;
— : int = 18014398509481983

a string is represented in a compact way (8 characters stored in a word),
consequentely

Sys.max_string_length ;;
— : int = 144115188075855863

C. Paulin (Université Paris-Saclay) Compilers 393/402

Nature of the block

The nature of a block is an integer encoded on 8 bits (0..255) ;

it allows the distinction between

floating point number

string

object

closure

the general case of a structure block : record, array, tuple, constructor

in the case of a constructor, the integer indicates the constructor
(for pattern-matching)

C. Paulin (Université Paris-Saclay) Compilers 394/402

Integers and pointers

When the GC looks at a block (for marking or copying), it must distinguish
between integers and pointers

difficulty : the compiler cannot indicate to the GC which fields will be pointers
because of polymorphic functions

let f x = (x, x)
f 42 (» a block which contains 2 integers =)

f [42] (* a block which contains 2 pointers =)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 395/402

@ An OCaml value is

e either a pointer, which is a pair number because of alignments constraints
@ or an odd integer 2n + 1, representing the value n

GC tests the least significant bit in order to determine if a field is a pointer
or not

@ consequence : OCaml integers are signed 63 bits integers

@ arithmetic becomes a bit more complicated
(the standard library contains a module Int64)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 396/402

thevalue1 :: 2 : is represented by

|3|M|M|1|

C. Paulin (Université Paris-Saclay) ompilers 2025-26 397/402

Other solution

@ to avoid wasting a bit, its possible to consider as a pointer everything
which looks like a pointer

@ itis
@ correct i.e. no reachable block will be released
e but not complete i.e. some unreachable blocks will not be released

it is called conservative GC

example : Boehm—Demers—Weiser GC for C and C++
(see https://www.hboehm.info/gc/)

C. Paulin (Université Paris-Saclay) Compilers 398/402

https://www.hboehm.info/gc/

Yet another solution

@ allocate everything in the heap, so any value is a pointer
@ choice made by Python for instance

C. Paulin (Université Paris-Saclay) Compilers 399/402

Conclusion

understanding programming languages is essential
@ to be a better programmer
e understanding the execution model
@ memory organisation : stack, heap
@ what is an object, a closure ...
@ be able to program in different languages

@ doing research in computer science
@ propose new languages

@ domain specific languages
@ languages better suited for modern architecture, security. . .

e design tools for languages

@ static analysis, verification
@ compilers (parallel architecture, Just in Time compiling ...)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 400/402

when compiling, we use
@ several phases (typing, computing, allocating. . .)

@ many different (advanced) technics : formal languages, semantics,
execution models. ..

some of these technics are reusable in other contexts :
@ linguistics
@ proofs using computers (proof assistants, program verification)
@ database requests

C. Paulin (Université Paris-Saclay) Compilers 2025-26 401/402

Evaluation

@ The three practical assigments must submitted on ecampus before
Tuesday October 21st 14 :00

@ Code + a small report explaining what has been done
@ Oral exam on Thursday October 23rd (choose your 30mn slot on
ecampus)

e some theoretical questions + review of the project
@ you can use your course notes

C. Paulin (Université Paris-Saclay) Compilers 402/402

	Automatic Memory Management
	Virtual memory
	Memory allocation
	Garbage Collection (GC)

