Programming Languages, semantics, compilers

Compiling a functional language C. Paulin (courtesy of J.-C. Filliâtre) M1 MPRI 2025–26

- Closures
- Tail calls
- Inline expansion
- Compiling pattern-matching

Introduction

Functional language

- Avoiding (or limiting) side-effects :
 - mathematical reasoning f(3) = f(3)
 - optimizing by code transformation easier
- Higher-order features (functions as first-class citizen) :
 - Functions as arguments
 - Functions as results of functions
 - Anonymous functions

The FUN language: concrete syntax

```
E::= n \mid \text{true} \mid \text{false}

\mid x \mid E \circ p E

\mid \text{if } E \text{ then } E \text{ else } E

\mid e e \mid \text{fun } x^+ \to e

\mid \text{let rec? } x x^* = E \text{ in } E
```

- Syntactic sugar for function definition
 - function with only one argument : **fun** $x \rightarrow e$
 - local declaration let rec? x = e in e

The FUN language: abstract syntax

Compiling a functional language

- Closures
- Tail calls
- Inline expansion
- Compiling pattern-matching

Representation of functions

- Formal parameters (arguments) + body
- When applied, we execute the body with actual values
- The body: code + a label to access it
- The body refers to variables: how to encode access to their values?

What are the possible variables?

- Global variables
- Arguments
- Local variables
- What else?
 - depends on where functions can be defined/used
 - can/cannot appear inside another function?
 - can/cannot be called outside the function which defines it

Stack allocation for imbricated functions

Example in Pascal

```
1 program main;
var f : integer;
g procedure fib(n : integer);
    procedure somme();
    var tmp : integer;
    begin
  fib (n-2);
7
tmp := f;
9 fib (n-1);
 f := f + tmp
10
    end:
12 begin
    if n \le 1 then f := n else somme()
14 end :
15 begin
 fib(3);
16
17 writeln(f)
18 end.
```

Stack frames

- we keep as before a pointer to the stack frame of the calling procedure
 - restored when the call is finished
 - f can be called from different functions
- an extra pointer to the last stack frame of the function g in which f was defined
 - f can access variables stored in the stack frame of g or one of its parents
- fib: argument n + saved values of \$fp and \$ra + stack frame of main

\$ra	\$fp	fpa	n

some: saved values of \$fp and \$ra + local variable tmp + stack frame
 of fib

tmp	\$ra	\$fp	fpa
-----	------	------	-----

Dynamic behavior

```
main()
fib(3)
                                                                  $fp
somme()
                                         main
                                                   a_0
                                                          1012
fib(1)
                                                          $ra
                                                                $fp
                                                                     fpa
                                         fib(3)
f:=1-ret fib(1)
                                                   a_1
                                                                           3
                                                                a_0
                                                                      a_0
tmp:=f
                                                                $ra
                                                                     $fp
                                                                           fpa
                                                          tmp
                                         somme
                                                   a_2
fib(2)
                                                                14
                                                                      a<sub>1</sub>
                                                                           a<sub>1</sub>
somme()
                                                                $fp
                                                                      fpa
                                         fib(1)
                                                   a_3
                                                           8
                                                                a_2
                                                                      a_0
fib(0)
f := 0-ret fib (0)
                                                          Ŝra
                                                                $fp
                                                                      fpa
                                         fib(2)
                                                   a_3
                                                                           2
                                                          10
                                                                a_2
                                                                      a_0
tmp:=f
                                                                $ra
                                                                     $fp
                                                                           fpa
                                                          tmp
fib(1)
                                         somme
                                                   a_4
                                                                14
                                                           0
                                                                     a_2
                                                                           a_2
f:=1-ret fib(1)
                                                          $ra
                                                                $fp
                                                                     fpa
                                         fib(0)
f := f + tmp
                                                   a_5
                                                           8
                                                                a_4
                                                                           0
                                                                      a_0
ret somme(), fib(2)
                                                                $fp
                                                          $ra
                                                                     fpa
                                         fib(1)
                                                   a_6
f := f + tmp
                                                          10
                                                                a_{4}
                                                                      a_0
ret somme(), fib(3)
```

Functions as output

- In Pascal, a function f defined in the procedure g will only be called in the body of g,
- There is at least one active frame-stack for g
- The function f can use variables introduced by g
- Does not work when functions are ordinary values

```
let g x =
  if x < 0 then fun y -> y - x
  else fun y -> y + x
let square f x = f (f x)
let main = square (g 5) 4
```

- How to design the code for the value of g x in a generic way?
- This code mentions the argument x
- The value of x is in the stack frame of g
- This value disappears when g 5 returns!

Closure

- The solution is to use a structure called closure to represent a function
- The closure has 2 components
 - the address of the code to be executed
 - the environment : values of the variables used by the body of the function
- The closure is allocated in the heap :
 - if the closure is created by a function g it will still be accessible after g returns

Which variables in the environment?

In the closure of the function $\mathbf{fun} \times -> \mathbf{e}$ we need all the values of the free variables

```
\begin{array}{rcl} fv(c) & = & \emptyset \\ fv(x) & = & \{x\} \\ fv(e_1 \circ p e_2) & = & fv(e_1) \cup fv(e_2) \\ fv(\operatorname{fun} x \to e) & = & fv(e) \setminus \{x\} \\ fv(e_1 \ e_2) & = & fv(e_1) \cup fv(e_2) \\ fv(\operatorname{let} x = e_1 \ \operatorname{in} \ e_2) & = & fv(e_1) \cup (fv(e_2) \setminus \{x\}) \\ fv(\operatorname{let} \operatorname{rec} x = e_1 \ \operatorname{in} \ e_2) & = & (fv(e_1) \cup fv(e_2)) \setminus \{x\} \\ fv(\operatorname{if} \ e_1 \ \operatorname{then} \ e_2 \ \operatorname{else} \ e_3) & = & fv(e_1) \cup fv(e_2) \cup fv(e_3) \end{array}
```

```
Program which approximates \int_0^1 x^n dx
let rec pow i x =
  if i = 0 then 1. else x *. pow (i-1) x
let integrate xn n =
  let f = pow n in
  let eps = 0.001 in
  let rec sum x =
    if x >= 1. then 0. else f x +. sum (x +. eps) in
  sum 0. *. eps
```

We explicit fun constructions

```
let rec pow =
fun i \rightarrow
fun x \rightarrow if i = 0 then 1. else x *. pow (i-1) x
```

- in the first closure, fun i ->, the envronment is {pow}
- in the second, fun x ->, it is {i, pow}

```
let integrate_xn = fun n ->
  let f = pow n in
  let eps = 0.001 in
  let rec sum =
    fun x -> if x >= 1. then 0. else f x +. sum (x+.eps) in
  sum 0. *. eps
```

- for fun n ->, the environment is {pow}
- pour fun x ->, the environment is {eps, f, sum}

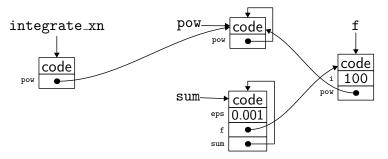
Representing a closure

- a unique block in the heap
- the first field is the address of the code
- the remaining fields contain values of the free variables

(other solutions are possible : environment in a second bloc, linked closures, etc.)

```
let rec pow i x = if i = 0 then 1. else x *. pow (i-1) x let integrate_xn n = let f = pow n in let eps = 0.001 in let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in sum 0. *. eps
```

when executing integrate_xn 100, we have 4 closures:



Compiling

A relatively easy way to compile closures is to proceed with 2 phases

• we look in the code for constructions $fun x \rightarrow e$ and we replace them with an explicit closure construction

$$clos f[y_1, \ldots, y_n]$$

with y_i the free variables of $fun x \rightarrow e$ and f a new name associated with a global declaration of function

letfun
$$f[y_1,\ldots,y_n]x=e'$$

with e' obtained from e by recursively removing the constructions fun (*closure conversion*)

we compile the obtained code which has only letfun function declarations

```
letfun fun2 [i,pow] x =
  if i = 0 then 1. else x *. pow (i-1) x
letfun fun1 [pow] i =
  clos fun2 [i,pow]
let rec pow =
  clos fun1 [pow]
letfun fun3 [eps,f,sum] x =
  if x >= 1. then 0. else f x +. sum (x +. eps)
letfun fun4 [pow] n =
  let f = pow n in
  let eps = 0.001 in
  let rec sum = clos fun3 [eps,f,sum] in
 sum 0. *. eps
let integrate xn =
  clos fun4 [pow]
```

Change of representation

```
before
                                after
type var = string
                                type var =
                                   Vglobal of string
                                    Vlocal of int
                                   Vclos of int
                                    Varg
                                type expr =
type expr =
    Evar of var
                                    Evar of var
    Efun of var * expr
                                   | Eclos of string * var list
    Eapp of expr * expr
                                    Eapp of expr * expr
    Elet of var * expr * expr
                                   | Elet of int * expr * expr
    Eif
                                    Eif
of expr * expr * expr
                                of expr * expr * expr
type decl = var * expr
                                type decl =
                                    Let of string * expr
                                    Letfun of string * expr
type prog = decl list
                                type prog = decl list
```

Implementing

An ident in the body of the function can represent

- Vglobal s: a global variable (introduced by let) with name s
- Vlocal n: a local variable (introduced by let in), at position n in the stack-frame
- Vclos n: a free variable in the closure, at position n
- Varg: the unique argument of the fonction (x in fun x -> e)

thi scope analysis of variable can be done simultaneously with closure conversion

Compiling scheme

each fonction has a unique argument (Varg), passed in register \$a₀

the cloture address is passed in the register a_1

the stack frame looks like: with v_1, \ldots, v_m places for local variables: it is built by the callee

register \$\pi_{a_0}\$
return address
\$fp saved
<i>V</i> ₁
i i
V _m
:

Compiling

We need to explain how to compile

- the construction of the closure Eclos(f, I)
- a function call $Eapp(e_1, e_2)$
- access to a variable Evar x
- function declaration Letfun(f, e)

Building a closure

Compiling

$$Eclos(f, [y_1, \ldots, y_n])$$

- allocate a block of size n + 1 on the heap (using malloc)
- put the f address in the field 0 (f is a label refering to the address)
- \odot store the value of variables y_1, \ldots, y_n in the fields 1 to n
- returns the address of the block

note: we wait for the GC to free the block when possible

Function call

Compiling an application

Eapp
$$(e_1, e_2)$$

- lacktriangledown compile e_1 and put its value (the address of a closure) in register \$a1
- 2 compile e_2 and put its value in register \$a0
- call the function using the adress stored in the first field of the closure jar (\$a1)

Accessing a variable

For compiling the accss to a variable

Evar X

we have 5 possible cases

- Vglobal s: the value is at the address with label s
- Vlocal n: the value is at the address n(\$fp)
- Vclos n: the value is at the address n(\$a1)
- Varg: the value is in \$a0

Function declaration

Compiling declaration

	return address
$p \rightarrow p$	\$fp saved
	<i>V</i> ₁
	:
	•
	V _m
	•

we do as usual for functions

- we save and replace \$fp
- we allocate the stack-frame (enough room for local variables) in e
- we produce code to evaluate e with a result in \$v0
- we free the stack-frame and restore \$fp
- we return

Optimisations

If a function *f* is defined by

let
$$f x_1 \dots x_n = e$$

and called with *n* arguments

$$f e_1 \ldots e_n$$

building the intermediate closures will be costly We can implement a « traditional » with all arguments passed

However a partial application will generate a closure

OCaml does this optimisation; on first-order code, the efficiency is the same as in a traditional (non functional) language

Optimisation

- If the closure does not survive the end of the function where it is defined, then the closure can be allocated on the stack
- A static analysis should be performed to make sure it is safe (escape analysis)

Example

```
let integrate_xn n = let f = ... in let eps = 0.001 in let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in sum 0. *. eps
```

Compiling a functional language

- Closures
- Tail calls
- Inline expansion
- Compiling pattern-matching

Tail call

Definition

A call to $(f e_1 \dots e_n)$ in the body of a function g is a tail call if it is the last instruction of g before returning its result.

- a tail recursive function is a function where all recursive calls are tail calls
- a tail call can be a non-recursive call
- in a recursive function, only some of the calls can be tail calls
- when f performs a tail call to g,
 - ullet the stack-frame of the caller f contains the right return address for g
 - ullet the local values stored in the stack frame of f will not be used after calling g
 - the stack frame of f can be reused a a stack frame for g
 - we can do a simple jump to the code of g
- tail-recursive functions can be compiled as efficiently as loops

Using higher-order functions

- How to get tail-recursive functions?
- Example:

Solution using continuations

 Instead of computing the height h, we compute k(h) for an arbitrary function k (the continuation)

```
val heightc: 'a tree \rightarrow (int \rightarrow 'b) \rightarrow 'b let height t = heightc t (fun h \rightarrow h)
```

What for?

```
let rec heightc t k = match t with
  | Empty ->
      k 0
  | Node (I, _, r) ->
      heightc I (fun hI ->
      heightc r (fun hr ->
      k (1 + max hI hr)))
```

- Calls to heightc and k are now tail-calls
- The stack with remain constant
- The closure will be allocated on the heap

Compiling a functional language

- Closures
- Tail calls
- Inline expansion
- Compiling pattern-matching

Optimizing functions calls

- Introducing many functions can be good for code readability
- A function call is costly
 - building the stack-frame
 - jumping to another part of the code
- Optimization (register allocation) are done inside the body of a function

Inline expansion of function bodies

- If we have a function definition let f x1 ... xn = e
- We replace a function call f a1 ... an by
 let x1 = a1 and ... xn = an in e
- if ai is atomic we replace xi by ai in e
- We need to avoid variable capture (rename in order to have different variable names)

 If all occurrences of the function have been inlined, remove the function definition

Loop invariant hoisting

Some recursive functions have "invariant" arguments

```
let rec f x1 .. xn = e[f,x1,...,xn]
```

- in e all recursive calls to f e1 .. en satisfies ek=xk for some k
- change the definition of f to avoid recomputing a constant parameter

Example

```
let rec dolist f | c = match | with
[] -> c ()
|a::m -> let dorest () = dolist f m c
in f a dorest
let double j = j + j
let print_double i c =
    let again () = putInt (double i) c
    in putInt i again
let print_table | c =
        dolist print_double | c
```

```
let dolist f | c =
  let rec dlrec | = match | with
  [] -> c ()
  |a::m -> let dorest () = dlrec m
  in f a dorest
  in dlrec |
...
let print_table | c =
  let rec dlrec | = match | with
  [] -> c ()
  |a::m -> let dorest () = dlrec m
  in print_double a dorest
  in dlrec |
```

Heuristics for program inlining

- Inlining makes code bigger, and has to stop at some point
- Inline some specific function calls that are frequently executed
- Inline functions that are only called once! then delete the function definition
- Inline functions with very small bodies (compensates the extra instructions for function calls)

Compiling a functional language

- Closures
- Tail calls
- Inline expansior
- Compiling pattern-matching

Pattern-matching in ML

- pattern matching generalises conditional constructions
- used in combination with definition of algebraic data-types
- function definition

function
$$p_1 o e_1 \mid \ldots \mid p_n o e_n$$

genealized conditionals

match
$$e$$
 with $p_1 o e_1 \mid \ldots \mid p_n o e_n$

exceptions handling

try
$$e$$
 with $p_1 \rightarrow e_1 \mid \ldots \mid p_n \rightarrow e_n$

ML

Pattern-matching The compiler will translate these high-level constructions to <u>elementary tests</u> (testing constructors, comparing constants) and access to fields of structured values.

we only consider the construction

match
$$x$$
 with $p_1 \rightarrow e_1 \mid \ldots \mid p_n \rightarrow e_n$

Pattern

A pattern is defined using the abstract syntax

$$p ::= x \mid C(p, \ldots, p)$$

with C a constructor, which can be

- a constant like false, true, 0, 1, "hello", etc.
- a constant constructor of an algebraich types, like [] or for example
 Empty déclared by type t = Empty | ...
- a constructor with arity $n \ge 1$ like : : or for instance Node déclared by type t = Node of t * t | ...
- a constructor for *n*-tuple, with $n \ge 2$

Linear patterns

Definition (linear patterns)

A pattern p is linear if a variable appears at most once in p.

example : the pattern (x, y) is linear, but (x, x) is not

note: OCaml accepts non linear patterns only in OR patterns

let
$$(x,x) = (1,2);;$$

Error: Variable x is bound several times in this matching

let
$$x,0 \mid 0,x = ...;$$
;

We only consider linear patterns and no disjunctive patterns (can be rewritten as several disjoint cases)

Pattern and values

The values are

$$v ::= C(v, \ldots, v)$$

with C the set of constants and constructors defined like for patterns

Definition (pattern-matching)

A value v matches a pattern p if there exists a substitution σ (which replaces variables by values) such that $v = \sigma(p)$.

note : we may assume that the domain of σ is exactly the set of variables of p

Result

Any value matches a pattern p=x which is just a variable; PROP A value v matches $p=C(p_1,\ldots,p_n)$ iff v is equal to $v=C(v_1,\ldots,v_n)$ and v_i matches p_i for all $i=1,\ldots,n$. proof:

It works because we have linear patterns, counter-example with the pattern C(x,x) and the value C(0,1)

Pattern-matching with several cases

Definition

In the pattern-matching

match X with
$$p_1 \rightarrow e_1 \mid \ldots \mid p_n \rightarrow e_n$$

if v is the value of x, we say that v matches the case p_i if v matches p_i but v does not match p_i for i < i.

The result of the matching is $\sigma(e_i)$, with σ a substitution such that $\sigma(p_i) = v$.

if v does not match any p_i , then the matching raises an error (exception Match_failure in OCaml)

Compiling pattern-matching

First algorithm:

We suppose given

- constr(e), returns the constructor for the value of e,
- #_i(e), returns the *i*-ième component of the value

If
$$e = C(v_1, ..., v_n)$$
 then $constr(e) = C$ and $\#_i(e) = v_i$

Compiling pattern-matching

We start by compiling d'one line

$$code(match \ e \ with \ p \rightarrow action) = F(p, e, action)$$

with the compilation function F defined by :

```
F(x, e, action) = \\ \text{let } x = e \text{ in } action \\ F(C, e, action) = \\ \text{if } constr(e) = C \text{ then } action \text{ else } error \\ F(C(p), e, action) = \\ \text{if } constr(e) = C \text{ then } F(p, \#_1(e), action) \text{ else } error \\ F(C(p_1, \ldots, p_n), e, action) = \\ \text{if } constr(e) = C \text{ then } \\ F(p_1, \#_1(e), F(p_2, \#_2(e), \ldots F(p_n, \#_n(e), action) \ldots) \\ \text{else } error \\ \end{cases}
```

Example

```
match x with 1 :: y :: z \rightarrow y + length z
```

its compilation gives the (pseudo-)code:

```
if constr(x) = :: then
   if constr(#1(x)) = 1 then
    if constr(#2(x)) = :: then
        let y = #1(#2(x)) in
        let z = #2(#2(x)) in
        y + length(z)
        else error
   else error
```

note : $\#_2(x)$ is computed several times, we could use let expressions in the definition of F to avoid that.

Correctness

if
$$e \stackrel{*}{\rightarrow} v$$
 alors

$$F(p, e, action) \stackrel{*}{\rightarrow} \sigma(action)$$

 $F(p, e, action) \stackrel{*}{\rightarrow} error$

if there exists
$$\sigma$$
 s.t. $v = \sigma(p)$ otherwise

proof: by induction on p

Dealing with several lines

We replace error by interpreting next line

$$code($$
match x with $p_1 \rightarrow e_1 \mid \ldots \mid p_n \rightarrow e_n) = F(p_1, x, e_1, F(p_2, x, e_2, \ldots F(p_n, x, e_n, error) \ldots))$

F now defined by:

```
F(x, e, success, error) = \\ \text{let } x = e \text{ in } success \\ F(C, e, success, error) = \\ \text{if } constr(e) = C \text{ then } success \text{ else } error \\ F(C(p_1, \ldots, p_n), e, success, error) = \\ \text{if } constr(e) = C \text{ then } \\ F(p_1, \#_1(e), F(p_2, \#_2(e), \ldots F(p_n, \#_n(e), success, error) \ldots, error) \\ \text{else } error \\
```

Example

```
match x with [] -> 1 | 1 :: y -> 2 | z :: y -> z
if constr(x) = [] then
 else
   if constr(x) = :: then
     if constr(#1(x)) = 1 then
       let y = #2(x) in 2
     else
        if constr(x) = :: then
         let z = #1(x) in let y = #2(x) in z
       else error
   else
     if constr(x) = :: then
       let z = #1(x) in let y = #2(x) in z
     else error
```

Problems

Its not very efficient because

- we do the same tests on different lines
- some tests are useless : if constr(e) ≠ [] then we can deduce constr(e) = ::)

We consider another algorithm which handle all the lines simultaneously

the problem is represented as a matrix

correspondin to the pattern-matching

match
$$(e_1, e_2, \dots, e_m)$$
 with $|(p_{1,1}, p_{1,2}, \dots, p_{1,m}) \rightarrow action_1 | \dots |(p_{n,1}, p_{n,2}, \dots, p_{n,m}) \rightarrow action_n$

The algorithm F proceeds recursively on the matrix

$$n = 0$$

$$F \mid e_1 \quad \dots \quad e_m \quad = error$$

$$\bullet$$
 $m=0$

$$F \left| egin{array}{ll}
ightarrow & \textit{action}_1 \ dots & dots \
ightarrow & \textit{action}_n \end{array}
ight| = \textit{action}_1$$

If the left column has only variables

$$M = \begin{vmatrix} e_1 & e_2 & \dots & e_m \\ \frac{X_{1,1}}{1} & p_{1,2} & \dots & p_{1,m} & \to & action_1 \\ \vdots & & & & \\ \frac{X_{n,1}}{1} & p_{n,2} & \dots & p_{n,m} & \to & action_n \end{vmatrix}$$

on élimine cette colonne en introduisant des let

$$F(M) = F \begin{vmatrix} e_2 & \dots & e_m \\ p_{1,2} & \dots & p_{1,m} & \rightarrow & \text{let } x_{1,1} = e_1 \text{ in } \textit{action}_1 \\ \vdots & & & \\ p_{n,2} & \dots & p_{n,m} & \rightarrow & \text{let } x_{n,1} = e_1 \text{ in } \textit{action}_n \end{vmatrix}$$

The left colums has at least one pattern starting with a constructor (or constant)

For instance we have three different constructors : C arity 1, D arity 0 and E arity 2

for each constructor C, D et E, we built a sub-matrix with all lines that could match a value starting with this constructor correspondant au filtrage d'une valeur pour ce constructeur

$$M = \begin{vmatrix} e_1 & e_2 & \dots & e_m \\ \frac{C(q)}{D} & p_{1,2} & \dots & p_{1,m} & \rightarrow & action_1 \\ \hline D & p_{2,2} & p_{2,m} & \rightarrow & action_2 \\ \hline X & p_{3,2} & p_{3,m} & \rightarrow & action_3 \\ \hline E(r,s) & p_{4,2} & p_{4,m} & \rightarrow & action_4 \\ \hline y & p_{5,2} & p_{5,m} & \rightarrow & action_5 \\ \hline \frac{C(t)}{E(u,v)} & p_{6,2} & p_{6,m} & \rightarrow & action_6 \\ \hline E(u,v) & p_{7,2} & \dots & p_{7,m} & \rightarrow & action_7 \end{vmatrix}$$

so

$$M_C = \begin{vmatrix} \#_1(e_1) & e_2 & \dots & e_m \\ q & p_{1,2} & \dots & p_{1,m} & \to & action_1 \\ & p_{3,2} & & p_{3,m} & \to & \text{let } x = e_1 \text{ in } action_3 \\ & p_{5,2} & & p_{5,m} & \to & \text{let } y = e_1 \text{ in } action_5 \\ \hline t & p_{6,2} & \dots & p_{6,m} & \to & action_6 \end{vmatrix}$$

$$M = \begin{vmatrix} e_1 & e_2 & \dots & e_m \\ C(q) & p_{1,2} & \dots & p_{1,m} & \rightarrow & action_1 \\ \underline{D} & p_{2,2} & p_{2,m} & \rightarrow & action_2 \\ \underline{X} & p_{3,2} & p_{3,m} & \rightarrow & action_3 \\ E(r,s) & p_{4,2} & p_{4,m} & \rightarrow & action_4 \\ \underline{y} & p_{5,2} & p_{5,m} & \rightarrow & action_5 \\ C(t) & p_{6,2} & p_{6,m} & \rightarrow & action_6 \\ E(u,v) & p_{7,2} & \dots & p_{7,m} & \rightarrow & action_7 \end{vmatrix}$$

so

$$M_D = \begin{vmatrix} e_2 & \dots & e_m \\ p_{2,2} & & p_{2,m} & \rightarrow & action_2 \\ p_{3,2} & & p_{3,m} & \rightarrow & \text{let } x = e_1 \text{ in } action_3 \\ p_{5,2} & \dots & p_{5,m} & \rightarrow & \text{let } y = e_1 \text{ in } action_5 \end{vmatrix}$$

$$M = \begin{array}{|c|c|c|c|c|c|c|} \hline e_1 & e_2 & \dots & e_m \\ \hline C(q) & p_{1,2} & \dots & p_{1,m} & \rightarrow & action_1 \\ D & p_{2,2} & & p_{2,m} & \rightarrow & action_2 \\ \hline \underbrace{x} & p_{3,2} & & p_{3,m} & \rightarrow & action_3 \\ \hline E(r,s) & p_{4,2} & & p_{4,m} & \rightarrow & action_4 \\ \hline y & p_{5,2} & & p_{5,m} & \rightarrow & action_5 \\ \hline C(t) & p_{6,2} & & p_{6,m} & \rightarrow & action_6 \\ \hline E(u,v) & p_{7,2} & \dots & p_{7,m} & \rightarrow & action_7 \\ \hline \end{array}$$

S0

$$M_E = \begin{vmatrix} \#_1(e_1) & \#_2(e_1) & e_2 & \dots & e_m \\ - & - & p_{3,2} & p_{3,m} & \to & \text{let } x = e_1 \text{ in } \textit{action}_3 \\ r & s & p_{4,2} & p_{4,m} & \to & \textit{action}_4 \\ - & - & p_{5,2} & p_{5,m} & \to & \text{let } y = e_1 \text{ in } \textit{action}_5 \\ u & v & p_{7,2} & \dots & p_{7,m} & \to & \textit{action}_7 \end{vmatrix}$$

we define a submatrix for all remaining values (with constructors different from C, D and E), ie variables

$$M_R = \left| egin{array}{lll} e_2 & \ldots & e_m \\ p_{3,2} & p_{3,m} &
ightarrow & ext{let } x = e_1 ext{ in } action_3 \\ p_{5,2} & \ldots & p_{5,m} &
ightarrow & ext{let } y = e_1 ext{ in } action_5 \end{array}
ight.$$

we define

$$F(M) = ext{case } constr(e_1) ext{ in } \ C \Rightarrow F(M_C) \ D \Rightarrow F(M_D) \ E \Rightarrow F(M_E) \ ext{otherwise} \Rightarrow F(M_R)$$

Termination

The algorithm terminates

The value

$$\sum_{i,j} size(p_{i,j})$$

decreases strictly with each recursive call to F, with

$$\begin{array}{rcl} \textit{size}(x) & = & 1 \\ \textit{size}(\textit{C}(p_1, \dots, p_n)) & = & 1 + \sum_{i=1}^n \textit{size}(p_i) \end{array}$$

Correctness

indication: use the interprétation of the matrix as

$$\begin{array}{l} \text{match}\; (\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_m) \; \text{with} \\ \mid (\boldsymbol{p}_{1,1},\boldsymbol{p}_{1,2},\ldots,\boldsymbol{p}_{1,m}) \rightarrow \textit{action}_1 \\ \mid \; \ldots \\ \mid (\boldsymbol{p}_{n,1},\boldsymbol{p}_{n,2},\ldots,\boldsymbol{p}_{n,m}) \rightarrow \textit{action}_n \end{array}$$

Efficiency

The type of the expression e_1 leads to optimizations :

```
case constr(e_1) in C \Rightarrow F(M_C) D \Rightarrow F(M_D) E \Rightarrow F(M_E) otherwise \Rightarrow F(M_R)
```

in many cases:

- no test if only one constructor (for instance a n-tuple) : $F(M) = F(M_C)$
- no otherwise case when C, D and E are the only constructors
- a simple if then else if only 2 constructeurs
- a table for jumping directly to the appropriate case when finitely many constructors
- a binary tree or hash-table when infinitely many constructors (integers or strings)

Example

considérons

match x with
$$[] \rightarrow 1 \mid 1 :: y \rightarrow 2 \mid z :: y \rightarrow z$$

matrix

$$M = \begin{vmatrix} x \\ [] & \rightarrow & 1 \\ 1::y & \rightarrow & 2 \\ z::y & \rightarrow & z \end{vmatrix}$$

We obtain

```
case constr(x) in

[] \rightarrow 1

:: \rightarrow case constr(\#1(x)) in

1 \rightarrow let y = \#2(x) in 2

otherwise \rightarrow

let z = \#1(x) in let y = \#2(x) in z
```

Bonus

 We detect <u>redondant cases</u> when an action does not appear in the code produced example

match x with false
$$\rightarrow$$
 1 | true \rightarrow 2 | false \rightarrow 3 gives case constr(x) in false \rightarrow 1 | true \rightarrow 2

 We detect non exhaustive patterns error appears in the code example

match x with
$$0 \rightarrow 0 \mid 1 \rightarrow 1$$
 gives

case constr(x) in
$$0 \rightarrow 0 \mid 1 \rightarrow 1$$

| otherwise \rightarrow error

Summary

- Functions as first-class citizen: code + environment (values for free variables)
- Variables correspond to different locations in the memory
 - Static addresses for global variables
 - Stack for values with a known limited lifetime
 - Registers for actual parameters, some local variables. . .
 - Heap for other values
- Generating access code :
 - Convention for a static place (register) where to find the (dynamic) address of the block (+ a static shift value)
- Code transformation
 - Understanding the semantics of high-level features by translation into "simpler code" (closer to the machine-level architecture)
 - Sometimes transformation is done in the programming language itself
 - Many possible optimizations (preserving the semantics)