Programming Languages, semantics, compilers

Compiling a functional language
C. Paulin (courtesy of J.-C. Filliatre)
M1 MPRI 2025-26

@ Closures

@ Tail calls

@ Inline expansion

@ Compiling pattern-matching

C. Paulin (Université Paris-Saclay) Compilers 259/330

Introduction

Functional language
@ Avoiding (or limiting) side-effects :
e mathematical reasoning f(3) = f(3)
e optimizing by code transformation easier
@ Higher-order features (functions as first-class citizen) :

e Functions as arguments
e Functions as results of functions
@ Anonymous functions

C. Paulin (Université Paris-Saclay) Compilers 260/330

The FUN language : concrete syntax

E::= n|true | false
| x | EopE
| if E then E else E
|ee|fun xt — e
|letrec? x x* = Ein E

@ Syntactic sugar for function definition

e function with only one argument : fun x — e
@ local declaration let rec? x = eine

C. Paulin (Université Paris-Saclay) Compilers 261/330

The FUN language : abstract syntax

type bop = Add | Sub | Mul | Lt | Eq (* [... %)
type expr

| Int
| Bop
| Var
| Let
| If

| Fun
I

App
Fix

of
of
of
of
of
of
of
of

type prog

int
bop = expr = expr
string
string = expr = expr
expr = expr * expr
string * expr
expr = expr
string = expr
expr (» or (string = expr) list =)

C. Paulin (Université Paris-Saclay) Compilers

262/330

Compiling a functional language

@ Closures

C. Paulin (Université Paris-Saclay) Compilers 263/330

Representation of functions

@ Formal parameters (arguments) + body

@ When applied, we execute the body with actual values

@ The body : code + a label to access it

@ The body refers to variables : how to encode access to their values ?

C. Paulin (Université Paris-Saclay) Compilers 264/330

What are the possible variables ?

@ Global variables
@ Arguments
@ Local variables

@ What else?

e depends on where functions can be defined/used
@ can/cannot appear inside another function ?
e can/cannot be called outside the function which defines it

C. Paulin (Université Paris-Saclay) Compilers 265/330

Stack allocation for imbricated functions

Example in Pascal

1 program main;

2 var f : integer;

s procedure fib(n : integer);
4 procedure somme();

5 var tmp : integer;

6 begin

7 fib (n-2);

8 tmp := f;

9 fib (n-1);

10 f = f + tmp

1 end;

2 begin

13 if n <=1 then f := n else somme()
12 end;

s begin

16 fib (3);

17 writeln (f)

18 end.

C. Paulin (Université Paris-Saclay) Compilers 266/330

Stack frames

@ we keep as before a pointer to the stack frame of the calling procedure

e restored when the call is finished
@ f can be called from different functions

@ an extra pointer to the last stack frame of the function g in which f was
defined

o f can access variables stored in the stack frame of g or one of its parents
@ fib :argument n + saved values of $fp and sra + stack frame of main

’$ra ‘$fp‘ fpa‘ n\

@ some : saved values of $fp and $ra + local variable tmp + stack frame
of fib

‘tmp ‘$ra ‘$fp ‘fpa‘

C. Paulin (Université Paris-Saclay) Compilers 2025-26 267/330

Dynamic behavior

main ()

fib (3)

somme ()

fib (1)

f:=1-ret fib (1)
tmp:=f

fib(2)

somme ()

fib (0)

f:=0-ret £ib (0)
tmp:=f

fib (1)

f:=1-ret fib (1)
f:=f+tmp

ret somme (), £ib (2)
f:=f+tmp

ret somme (), £ib (3)

main

£ib(3)
somme
£ib(1)
£ib(2)
somme
£ib(0)

fib(1)

ap

a4

a

N

as

as

a

N

as

a

()

£ Sfp
(1012] |
Sra Sfp fpa n
[17]a | a[3]
mp Sra Sfp fpa

(1]14]a[a]

Sra Sfp fpa n
[8lafa[1]

Sra S$Sfp fpa

(10 a [a 2]

tmp Sra Sfp fpa
[0 [14]a [a |
Sra Sfp fpa n

(8 a2]0]

Sra Sfp fpa

(10 a [a [1]

C. Paulin (Université Paris-Saclay)

Compilers

268/330

Functions as output

@ In Pascal, a function f defined in the procedure g will only be called in the
body of g,
@ There is at least one active frame-stack for g
@ The function f can use variables introduced by g
@ Does not work when functions are ordinary values
let g x =
if x <0 then fun y —> y - x
else fun y —> y + x

let square f x = f (f x)
let main = square (g 5) 4

@ How to design the code for the value of g x in a generic way ?
@ This code mentions the argument x

@ The value of x is in the stack frame of g
@ This value disappears when g 5 returns !

C. Paulin (Université Paris-Saclay) Compilers 2025-26 269/330

Closure

@ The solution is to use a structure called to represent a function

@ The closure has 2 components

o the address of the code to be executed
o the : values of the variables used by the body of the function

@ The closure is allocated in the heap :
e if the closure is created by a function g it will still be accessible after g returns

C. Paulin (Université Paris-Saclay) Compilers 270/330

Which variables in the environment ?

In the closure of the function fun x —> e we need all the values of the free
variables

() = 0
fv(x) = {x}
fv(eioper) = fv(er)Ufv(en)
fv(funx —e) = fv(e)\{x}
fv(e1 2) = fv(e1) U fV(ez)
fv (let X =€ in 62) = fv(e1) @] (fV(eg)\{X})
fv(let rec x =€y ine) = (fv(er)Ufv(e))\{x}
fv(if e; then ex else €3) = fv(ey)Ufv(er) U fv(es)

C. Paulin (Université Paris-Saclay) Compilers — 271/330

Program which approximates f01 x"dx

let rec pow i x =
if i =0 then 1. else x . pow (i-1) x

let integrate_xn n =
let f = pow n in
let eps = 0.001 in
let rec sum x =

if x >= 1. then 0. else f x +. sum (x +. eps) in
sum 0. . eps

C. Paulin (Université Paris-Saclay)

Compilers

272/330

We explicit fun constructions

let rec pow =
fun i —>
fun x —> if i = 0 then 1. else x . pow (i-1) x

@ in the first closure, fun i ->, the envronment is {pow}
@ inthe second, fun x —>,itis {i,pow}

C. Paulin (Université Paris-Saclay) Compilers 273/330

let integrate_xn = fun n —>
let f = pow n in
let eps = 0.001 in
let rec sum =
fun x —> if x >= 1.

then 0. else f x +. sum (x+.eps) in
sum 0. . eps

@ for fun n ->, the environment is {pow}

@ pour fun x ->, the environmentis {eps, £, sum}

C. Paulin (Université Paris-Saclay)

Compilers

274/330

Representing a closure

@ a unique block in the heap
@ the first field is the address of the code
@ the remaining fields contain values of the free variables

(other solutions are possible : environment in a second bloc, linked closures,
etc.)

C. Paulin (Université Paris-Saclay) Compilers 275/330

let rec pow i x = if i = 0 then 1. else x *. pow (i-1) X
let integrate_xn n =

let f = pow n in

let eps = 0.001 in

let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in
sum 0. =*. eps

when executing integrate_xn 100, we have 4 closures :

—
integrate_xn pow. codely f
l pow ® l
code cloodoe
pow o— i
sum—»| pov—e
code
eps |0.001
£ o— d

C. Paulin (Université Paris-Saclay)

Compilers

276/330

Compiling

A relatively easy way to compile closures is to proceed with 2 phases

@ we look in the code for constructions fun x — e and we replace them
with an explicit closure construction

clos f[Yhqun]

with y; the free variables of fun x — e and f a new name associated with
a global declaration of function

letfunfys,....yn) x=¢€

with € obtained from e by recursively removing the
constructions fun (closure conversion)

@ we compile the obtained code which has only 1et fun function
declarations

C. Paulin (Université Paris-Saclay) Compilers 2025-26 277/330

letfun fun2 [i,pow] x =
if i =0 then 1. else x
letfun funi1 [pow] i =
clos fun2 [i,pow]
let rec pow =
clos fun1 [pow]
letfun fun3 [eps,f,sum] x
if x >= 1. then 0. else f x +. sum (x +. eps)
letfun fun4 [pow] n =
let f = pow n in
let eps = 0.001 in
let rec sum = clos fun3 [eps,f,sum] in
sum 0. =. eps
let integrate_xn =
clos fun4 [pow]

*

pow (i-1) x

C. Paulin (Université Paris-Saclay) Compilers 2025-26 278/330

Change of representation

before after
type var = string type var =
| Vglobal of string
| Vlocal of int
| Vclos of int
| Varg
type expr = type expr =
| Evar of var | Evar of var
| Efun of var » expr | Eclos of string « var list
| Eapp of expr = expr | Eapp of expr = expr
| Elet of var = expr = expr | Elet of int = expr » expr
| Eif | Eif
of expr = expr = expr of expr = expr » expr
| ... | ...
type decl = var = expr type decl =
| Let of string = expr
| Letfun of string = expr
type prog = decl list type prog = decl list

C. Paulin (Université Paris-Saclay) Compilers 2025-26 279/330

Implementing

An ident in the body of the function can represent
@ Vglobal s:a global variable (introduced by 1et) with name s

@ Vlocal n:alocal variable (introduced by 1et in),
at position n in the stack-frame

@ vVclos n: afree variable in the closure, at position n
@ Vvarg : the unique argument of the fonction (x in fun x -> e)

thi scope analysis of variable can be done simultaneously with closure
conversion

C. Paulin (Université Paris-Saclay) Compilers 2025-26 280/330

Compiling scheme

each fonction has a unique argument (Varg), passed in register $ag

the cloture address is passed in the register $a; return address
$fo — $fp saved

Vi

the stack frame looks like :
with vy, ..., v, places for local variables :
it is built by the callee

Vm

C. Paulin (Université Paris-Saclay) Compilers 281/330

Compiling

We need to explain how to compile
@ the construction of the closure Eclos(f,/)
@ afunction call Eapp(ey, €2)
@ access to a variable Evar x
@ function declaration Let fun(f, e)

C. Paulin (Université Paris-Saclay) Compilers 282/330

Building a closure

Compiling
EClOS(f7 [y1 PR 7Yn])
@ allocate a block of size n+ 1 on the heap (using malloc)

@ put the f address in the field 0
(f is a label refering to the address)

@ store the value of variables y1, ..., y, in the fields 1 to n
© returns the address of the block

note : we wait for the GC to free the block when possible

C. Paulin (Université Paris-Saclay) Compilers 283/330

Function call

Compiling an application
Eapp(é1, €2)

@ compile ey and put its value (the address of a closure) in register $at
@ compile e, and put its value in register $a0

@ call the function using the adress stored in the first field of the closure
jar ($al)

C. Paulin (Université Paris-Saclay) Compilers 284/330

Accessing a variable

For compiling the accss to a variable
Evar X

we have 5 possible cases
@ Vglobal s:the value is at the address with label s
@ Vlocal n:the value is at the address n($/p)
@ Vclos n:the value is at the address n($at)
@ Varg : the value is in $a0

C. Paulin (Université Paris-Saclay) Compilers 285/330

Function declaration

return address

. . $fo — $fp saved
Compiling declaration v;

Letfun(f,e)

Vm

we do as usual for functions
@ we save and replace $fp
@ we allocate the stack-frame (enough room for local variables) in e
© we produce code to evaluate e with a result in $v0
© we free the stack-frame and restore $fp
@ we return

C. Paulin (Université Paris-Saclay) Compilers 286/330

Optimisations

If a function f is defined by
let fXy...Xp=¢€

and called with n arguments
fer ... e

building the intermediate closures will be costly
We can implement a « traditional » with all arguments passed

However a partial application will generate a closure

OCaml does this optimisation ; on first-order code, the efficiency is the same
as in a traditional (non functional) language

C. Paulin (Université Paris-Saclay) Compilers 2025-26 287/330

Optimisation

@ If the closure does not survive the end of the function where it is defined,
then the closure can be allocated on the stack
@ A static analysis should be performed to make sure it is safe (escape
analysis)
Example

let integrate_xn n =

let f = ... in
let eps = 0.001 in
let rec sum x = if x >= 1. then 0. else f x +. sum (x+.eps) in

sum 0. =*. eps

2025-26 288/330

C. Paulin (Université Paris-Saclay) Compilers

Compiling a functional language

@ Tail calls

C. Paulin (Université Paris-Saclay) Compilers 289/330

Tail call

Definition

Acallto (f er ... ep) in the body of a function g is a tail call if it is the last
instruction of g before returning its result.

@ a tail recursive function is a function where all recursive calls are tail calls
@ a tail call can be a non-recursive call
@ in a recursive function, only some of the calls can be tail calls

@ when f performs a tail call to g,

the stack-frame of the caller f contains the right return address for g

the local values stored in the stack frame of f will not be used after calling g
the stack frame of f can be reused a a stack frame for g

we can do a simple jump to the code of g

@ tail-recursive functions can be compiled as efficiently as loops

C. Paulin (Université Paris-Saclay) Compilers 2025-26 290/330

Using higher-order functions

@ How to get tail-recursive functions ?
@ Example :

type ’'a tree = Empty | Node of ’a tree « ’'a = ’a tree
let rec height = function

| Empty -> 0

| Node (I, _, r) —=> 1 + max (height I) (height r)

C. Paulin (Université Paris-Saclay) Compilers 291/330

Solution using continuations

@ Instead of computing the height h, we compute k(h) for an arbitrary
function k (the continuation)

val heightc: ’a tree —> (int -> 'b) —> 'b
let height t = heightc t (fun h —> h)

C. Paulin (Université Paris-Saclay) Compilers 292/330

let rec heightc t k = match t with

| Empty —>
k 0

| Node (I, _, r) —>
heightc | (fun hl —
heightc r (fun hr —

k (1 + max hl hr)))

@ Calls to heightc and k are now tail-calls
@ The stack with remain constant
@ The closure will be allocated on the heap

C. Paulin (Université Paris-Saclay) Compilers 293/330

Compiling a functional language

@ Inline expansion

C. Paulin (Université Paris-Saclay) Compilers 294/330

Optimizing functions calls

@ Introducing many functions can be good for code readability
@ A function call is costly

@ building the stack-frame
e jumping to another part of the code

@ Optimization (register allocation) are done inside the body of a function

C. Paulin (Université Paris-Saclay) Compilers 295/330

Inline expansion of function bodies

@ If we have a function definition let f x1 ... xn=¢e

@ We replace a function call f a1 ... anby
let x1=aland ... xn=anin e

o if ai is atomic we replace xi by ai in e

@ We need to avoid variable capture (rename in order to have different
variable names)

let x =5 in let x =5 in let x =5 in

let gy =y + xinjlet gy =y + xin|let gy =y + x in
let f x =g 1+ x [[let f x = 1+x+X let f a = 1+x+a
in f 2 + x in f 2+ x in f 2 + x

@ If all occurrences of the function have been inlined, remove the function
definition

C. Paulin (Université Paris-Saclay) Compilers 2025-26 296/330

Loop invariant hoisting

@ Some recursive functions have “invariant” arguments

let rec f x1 .. xn = e[f,x1,..,xn]

@ in e all recursive callsto f e1 .. en satisfies ek=xk for some k
@ change the definition of f to avoid recomputing a constant parameter

let f x1 .. xn =
let rec f' (xi)_{i<>k}

=e[(f el .. en) <= f’ (ei)_{i<>k}]
in ' (xi)_{i<>k}

C. Paulin (Université Paris-Saclay) Compilers 297/330

let dolist f | ¢ =
let rec dolist f | ¢ = match | with let rec direc | = match | with
1 ->c () 1 ->c ()
la::m —> let dorest () = dolist f mc |la::m —> let dorest () = dlrec m
in f a dorest in f a dorest
let double j = j + j in direc |
let print_double i ¢ =
let again () = putlnt (double i) c let print_table | ¢ =
in putint i again let rec direc | = match | with
[1 =c¢ ()
let print_table | ¢ = |a::m -> let dorest () = dlrec m
dolist print_double | ¢ in print_double a dorest
in dlrec |

C. Paulin (Université Paris-Saclay) Compilers

298/330

niversité Pari: Compilers 299/330

Heuristics for program inlining

@ Inlining makes code bigger, and has to stop at some point

@ Inline some specific function calls that are frequently executed

@ Inline functions that are only called once ! then delete the function
definition

@ Inline functions with very small bodies (compensates the extra
instructions for function calls)

C. Paulin (Université Paris-Saclay) Compilers 300/330

Compiling a functional language

@ Compiling pattern-matching

C. Paulin (Université Paris-Saclay) Compilers 301/330

Pattern-matching in ML

@ pattern matching generalises conditional constructions
@ used in combination with definition of algebraic data-types

@ function definition
functionpy — €| ... | pn— €n
@ genealized conditionals
match e with py — €| ... | pp— €n
@ exceptions handling

try ewithpy —e1| ... | pn— €n

C. Paulin (Université Paris-Saclay) Compilers 302/330

Pattern-matching The compiler will translate these high-level constructions to
elementary tests (testing constructors, comparing constants) and access to
fields of structured values.

we only consider the construction

match X withpr — €1 | ... | pn— €n

C. Paulin (Université Paris-Saclay) Compilers 303/330

A pattern is defined using the abstract syntax

p:u=x|C(p,...,p)

with C a constructor, which can be
@ aconstant like false, true, 0,1, "hello", etc.
@ a constant constructor of an algebraich types, like [] or for example
Empty déclared by type t = Empty |
@ a constructor with arity n > 1 like : : or for instance Node déclared by
type t = Node of t » t |

@ a constructor for n-tuple, with n > 2

C. Paulin (Université Paris-Saclay) Compilers 304/330

Linear patterns

Definition (linear patterns)

A pattern pis linear if a variable appears at most once in p.

example : the pattern (x, y) is linear, but (x, x) is not

note : OCaml accepts non linear patterns only in OR patterns
let (x,x) = (1,2);;

Error : Variable x is bound several times in this matching

let x,0 | O,x = ...;;

We only consider linear patterns and no disjunctive patterns (can be rewritten
as several disjoint cases)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 305/330

Pattern and values

The values are
vi=C(v,...,v)

with C the set of constants and constructors defined like for patterns

Definition (pattern-matching)

A value v matches a pattern p if there exists a substitution o (which replaces
variables by values) such that v = o(p).

note : we may assume that the domain of ¢
is exactly the set of variables of p

C. Paulin (Université Paris-Saclay) Compilers 2025-26 306/330

Any value matches a pattern p = x which is just a variable ; PROP A value v
matches p = C(p1,...,pn) iff visequalto v = C(w, ..., Vv,) and v; matches
piforalli=1,... n. proof:

It works because we have linear patterns, counter-example with the pattern
C(x, x) and the value C(0,1)

C. Paulin (Université Paris-Saclay) Compilers

307/330

Pattern-matching with several cases

Definition
In the pattern-matching

match X withp; — €1 | ... | pn— €n

if v is the value of x, we say that v matches the case p; if v matches p; but v
does not match p; for j < /.

The result of the matching is o(e;), with o a substitution such that o(p;) = v.

v

if v does not match any p;, then the matching raises an error (exception
Match_failure in OCaml)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 308/330

Compiling pattern-matching

First algorithm :

We suppose given
@ constr(e), returns the constructor for the value of e,
@ #;(e), returns the j-ieme component of the value

If e= C(wq,...,Vvn) then constr(e) = C and #;(e) = v;

C. Paulin (Université Paris-Saclay) Compilers

309/330

Compiling pattern-matching

We start by compiling d’one line
code(match ewith p — action) = F(p, e, action)
with the compilation function F defined by :

F(x, e, action) =
let X = e in action
F(C, e, action) =
if constr(e) = C then action else error
F(C(p), e, action) =
if constr(e) = C then F(p, #1(e), action) else error
F(C(p1,...,pn), e action) =
if constr(e) = C then
F(py, #1(€), F(p2, #2(€), ... F(pn, #n(€), action) .. .)
else error

C. Paulin (Université Paris-Saclay) Compilers 310/330

match x with 1 1y :: z —> y + length z

its compilation gives the (pseudo-)code :

if constr(x) = :: then
if constr(#1(x)) = 1 then
if constr(#2(x)) = :: then
let y = #1(#2(x)) in
let z = #2(#2(x)) in
y + length(z)
else error
else error
else error

note : #, (x) is computed several times, we could use 1et expressions in the
definition of F to avoid that.

C. Paulin (Université Paris-Saclay)

Compilers 2025-26 311/330

Correctness

if e 5 v alors

F(p, e, action) = o(action) if there exists o s.t. v = o(p)
F(p, e, action) = error otherwise

proof : by induction on p

C. Paulin (Université Paris-Saclay) Compilers 312/330

Dealing with several lines

We replace error by interpreting next line

code(match X withpy = €| ... |pp— €p) =
F(p1,x,e1, F(pe, X, €2, ... F(pn, X, €n, €r70r) ...))

F now defined by :

F(x, e, success, error) =
let X = e in success
F(C, e, success, error) =
if constr(e) = C then success else error
F(C(p1,-..,pn), e, success, error) =
if constr(e) = C then
F(p1,#1(e), F(p2, #2(€), ... F(pn, #n(€), success, error) . . ., error)
else error

C. Paulin (Université Paris-Saclay) Compilers 313/330

match x with [] -1 | 1 1y >2 | z 1y —> 2

if constr(x) = [] then
1
else
if constr(x) = :: then
if constr(#1(x)) = 1 then
let y = #2(x) in 2
else
if constr(x) = :: then
let z = #1(x) in let y = #2(x) in z
else error
else
if constr(x) = :: then
let z = #1(x) in let y = #2(x) in z
else error

C. Paulin (Université Paris-Saclay) Compilers 314/330

Its not very efficient because
@ we do the same tests on different lines

@ some tests are useless : if constr(e) # [1 then we can deduce
constr(e) = : :)

C. Paulin (Université Paris-Saclay) Compilers 315/330

Another algorithm

We consider another algorithm which handle all the lines simultaneously

the problem is represented as a matrix

(2] (=) ... ©enm
pii P12 ... Pim — action
Pn1 Pn2 .. Pnm — action,,

correspondin to the pattern-matching

match (€1, €z,...,6p) with
| (P1,1,P1,2,- -, P1,m) — action,
I

| (Pn,15Pn2; - - - Pn,m) — action,

C. Paulin (Université Paris-Saclay) Compilers 316/330

Another algorithm

The algorithm F proceeds recursively on the matrix

oen=20
e ... e
Fl = m | = error
em=0
— actiony ,
= action
— action,

C. Paulin (Université Paris-Saclay) Compilers 317/330

Another algorithm

If the left column has only variables

€

(7] ... ©em
P12 ... Pim —
Pn2 .- Pnm —

on élimine cette colonne en introduisant des let

F(M)=F

€2
P12

Pn2

em
Pim — let X4

l)n’nq — let)(n71

actiony

action,,

= ey in actiomn

= e¢ in action,

C. Paulin (Université Paris-Saclay)

Compilers

318/330

Another algorithm

The left colums has at least one pattern starting with a constructor (or
constant)

For instance we have three different constructors : C arity 1, D arity 0 and E
arity 2

e €eo ... ©em

C(q) pi2 ... pi,m — actiony
D P22 Pom — actiony
X P32 pPs.m — actions

M= , ’ .

E(r,s) pa2 Psam — actiony
y Ps,2 ps.m — actions
C(t) pse2 Ps,m — actions
E(u,v) pre ... prm — action;

for each constructor C, D et E, we built a sub-matrix with all lines that could
match a value starting with this constructor correspondant au filtrage d’une
valeur pour ce constructeur

C. Paulin (Université Paris-Saclay) Compilers 2025-26 319/330

Another algorithm

SO

Me =

&

E(r,s)

E(u,v)

P12
P32
Ps.2
Ps,2

P12
P22
Ps,2
Pa2
Ps,2
Pe .2
P72

€m

P ,m
P3.m
Ps,m
Pe,m

p1,m
P2,m
P3,m
Pa,m
Ps,m
pﬁ,m
P7.m

Ll

— actiony

— action,

— actions

— actiony

— actions

— actiong

— actiony
actiony
let X = e in actions
let y = €4 in actions
actiong

C. Paulin (Université Paris-Saclay)

Compilers

320/330

Another algorithm

e eo ... ©em
C(q) Pi2 .. Ptm — actiom
P22 Pom — actiony
M= P32 ps,m — actions
| E(r,8) pa2 Pam — actions
Ps.2 psm — actions
C(t) [Pe,m — actions
E(u,v) pr2 ... prm — actiom
SO
(7] ... ©enm
Mp = P22 po.m — action .
P32 P3m — let X = ey in actions
pPs2 ... Psm — let y = e in actions

C. Paulin (Université Paris-Saclay) Compilers 321/330

Another algorithm

(=] €2 ... ©enm
C(q) Pi2 .. P1m — actiom
D P22 Pom — action
P32 ps,m — actions
M= Pa.2 pam — action
Ps.2 psm — actions
C(t) Ps,2 Pe.m — actions
pr2 ... Prm — action
SO
#1(61) #2(61) (2] ... em
_ _ P32 ps.m — let x = ey in actions
Me=|r s Pa2 Pam — actiony
_ _ P52 ps.m — let y = ey in actions
u v pr2 ... prm — actiorn

C. Paulin (Université Paris-Saclay) Compilers 322/330

Another algorithm

we define a submatrix for all remaining values (with constructors different from
C, D and E), ie variables

(=) ... ©em
Mg =| p32 Psm — let Xx= ey in actions
Ps2 ... Psm — let y = e in actions

C. Paulin (Université Paris-Saclay) Compilers 323/330

Another algorithm

we define
F(M) = case constr(e;) in
D = F(Mp)
E = F(Mg)
otherwise = F(Mg)

C. Paulin (Université Paris-Saclay) Compilers 324/330

Termination

The algorithm terminates
The value
Z size(p,'J)
i
decreases strictly with each recursive call to F, with

size(x) = 1
size(C(p1,...,pn)) = 1+, size(pi)

C. Paulin (Université Paris-Saclay) Compilers

325/330

Correctness

indication : use the interprétation of the matrix as

match (€1, 6z,...,6p) with
| (P1,1,P1,2,- -, P1,m) — action;
I

| (Pn,15Pn2; - - Pnm) — action,

C. Paulin (Université Paris-Saclay)

Compilers 326/330

Efficiency

The type of the expression ey leads to optimizations :

case constr(ey) in
C= F(Mc)
D = F(Mp)
E = F(Mg)
otherwise = F(Mg)

in many cases :
@ no test if only one constructor (for instance a n-tuple) : F(M) = F(Mc)
@ no otherwise case when C, D and E are the only constructors
@ asimple if then else if only 2 constructeurs
o

a table for jumping directly to the appropriate case when finitely many
constructors

@ a binary tree or hash-table when infinitely many constructors (integers or
strings)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 327/330

considérons

match x with [] —> 1 | 1 y >2 |z iy >z

matrix
X
1 — 1
M= 1::y — 2
zZ::y — Z
We obtain

case constr(x) in
[1 —>1
: —> case constr(#1(x)) in
1 —> let y = #2(x) in 2
otherwise —>
let z = #1(x) in let y = #2(x) in z

C. Paulin (Université Paris-Saclay)

Compilers

328/330

Bonus

@ We detect redondant cases
when an action does not appear in the code produced

example

match x with false -> 1 | true -~ 2 | false -> 3
gives

case constr(x) in false -> 1 | true -> 2

@ We detect non exhaustive patterns
error appears in the code

example
match x with 0 -> 0 | 1 —> 1
gives

case constr(x) in 0 —> 0 | 1 —> 1
| otherwise —> error

C. Paulin (Université Paris-Saclay) Compilers 2025-26 329/330

@ Functions as first-class citizen : code + environment (values for free
variables)

@ Variables correspond to different locations in the memory

o Static addresses for global variables

o Stack for values with a known limited lifetime

o Registers for actual parameters, some local variables. ..
e Heap for other values

@ Generating access code :
e Convention for a static place (register) where to find the (dynamic) address
of the block (+ a static shift value)
@ Code transformation
e Understanding the semantics of high-level features by translation into
“simpler code” (closer to the machine-level architecture)
e Sometimes transformation is done in the programming language itself
@ Many possible optimizations (preserving the semantics)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 330/330

	Closures
	Tail calls
	Inline expansion
	Compiling pattern-matching

