Programming Languages, semantics, compilers

Register allocation
C. Paulin (courtesy of T. Balabonski)
M1 MPRI 2025-26

0 Program analysis and register allocation
Introduction to the problem

@ Interferences, allocation via coloring
@ Computing the interference graph

@ Dataflow analysis
°
°

Register allocation for function call
Other optimizations

C. Paulin (Université Paris-Saclay) Compilers 210/258

Introduction

@ We need temporary memory for
@ expression evaluation
o local variables
e function arguments
@ The amount of memory is not always known at compile-time
e form a stack to store the values
@ Loading/Writing values in the stack is costly
@ try to use registers instead, as much as possible

Main reference for this part :
Andrew. W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 211/258

The IMP language

@ We consider here a core imperative programming language IMP
e only integer variables
@ A program consists of global variable declarations and function
declarations
@ Instructions

putchar (e) ; print character with ASCII code e
e; evaluate the expression e
X=e; put the value of expression e in variable x

if (e) {listi1 } else { listi2 } conditional
while (e) { list of instructions } | while loop
return (e) ; exit function with value e

212/258

C. Paulin (Université Paris-Saclay) Compilers 2025-26

The IMP language : abstract syntax trees

type expression =
| Cst of int
| Bool of bool
| Var of string
| Binop of binop +« expression = expression
| Call of string * expression list

type instruction =
| Putchar of expression
| Set of string + expression
| If of expression = sequence = sequence
| While of expression = sequence
| Return of expression
| Expr of expression
and sequence = instruction list

type function_def = {
name: string;
params: string list;
locals: string list;
code: sequence;

}

type program = {
globals: string list;
functions: function_def list;

}

C. Paulin (Université Paris-Saclay) Compilers 213/258

Function call

@ Try to put local variables in registers

@ First possibility : associate a variable to a register for the duration of body
execution
@ non optimal

function live (n) {
var i;
var j;
i=0; while (i < n) { putchar(97+i); i = i+1; }
putchar(10);
j=0; while (j < 10) { putchar(48+j); j = j+1; }
putchar(10);
}

@ Two different local variables might safely use the same register

e find variables that cannot share the same register
e optimize which registers are given to each variables

C. Paulin (Université Paris-Saclay) Compilers 2025-26 214/258

Storing intermediate values

@ Store intermediate values in the stack (only 2 registers are needed)

@ Use dedicated registers as much as possible and when no more registers
are available, store oldest values in the stack

@ Transform the problem :

e Given an expression e, we transform the code for evaluating e into a
sequence of elementary instructions involving at most one operation, with
operands being variables or constants.

@ Use optimisation of local variables allocation to do the job

C. Paulin (Université Paris-Saclay) Compilers 2025-26 215/258

Code for transformation

let is_atom = function | Cst _ | Bool _ | Var _ —> true | _ —> false

let transf (e : expr) : sequence = expr =
let i = ref 0 in
let newvar () = let v = Printf.sprintf "_r_%d" i in incr i; v
in
let rec trec Ic =
function
e when is_atom e -> Ic,e
| Binop(o,el,e2) —->
let Ic1,al = trec Ic el
in let Ic2,a2 = trec lc1 e2
in let x = newvar ()
in (Set(x,Binop(o,al,a2))::lc2, Var x)
| Call(f,le) —>
let (lc,la) =
List.fold_left
(fun (lc1,la1l) e —> let Ic2,a =trec Ic1 e in (Ic2,a::lal))
(le,[1) le
in let x = newvar ()
in (Set(x,Call(f,List.rev la))::lc,Var x)
in let (code, at) = trec [] e in (List.rev code, at)

C. Paulin (Université Paris-Saclay) Compilers 216/258

val ex1 : expr =
Binop (Add,
Call ("f",
[Binop (Add, Var "x", Binop (Add, Var "y", Cst 4));
Binop (Add, Cst 4, Cst 4)]),
Binop (Add, Var "z", Var "x"))
let _ = transf ex1;;
- ! sequence * expr =
([Set ("_r_0", Binop (Add, Var "y", Cst 4));

Set ("_r_1", Binop (Add, Var "x", Var "_r_0"));
Set ("_r_2", Binop (Add, Cst 4, Cst 4));

Set ("_r_3", Call ("f", [Var "_r_1"; Var "_r_2"1));
Set ("_r_4", Binop (Add, Var "z", Var "x"));

Set ("_r_5", Binop (Add, Var "_r_3", Var "_r_4"))],
Var "_r_5")

C. Paulin (Université Paris-Saclay) Compilers 217/258

4-Optimization

0 Program analysis and register allocation

@ Interferences, allocation via coloring

C. Paulin (Université Paris-Saclay) Compilers 218/258

From interference graph to register allocation

@ We build a graph, called interference graph
o Vertex : local variable
e Edge : between x and y when they interfere which means they cannot share
the same register
@ Finding a proper register allocation becomes a graph colouring problem
e The colors are the available registers
e Two adjacent vertexes cannot have the same color
@ If the graph is planar, we only need 4 registers
@ Solving the problem in an optimal way in general is NP-complete
@ We shall use heuristics instead

@ choose one variable, remove it from the graph
o try to recursively color this simpler graph
@ put back the variable and try to find for it a color

C. Paulin (Université Paris-Saclay) Compilers 2025-26 219/258

Algorithm for k-coloring

@ if the graph is empty : problem solved
@ if the graph has one node x with degre strictly less than k then
o Build a graph G’ by removing x and all edges with x
e Color G
e Put back the node x on this colored graph : not all the k colors are used by
the neighbors so there is a color available for x
@ if all the nodes have a degree at least k, choose as before a node x
e remove x and color the remaining graph
@ look at the colors used by the neighbors of x :

@ if there is one color left, give it to x
@ otherwise mark x to be stored in the stack (transfering the value, requires one
register, but with a very short period)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 220/258

Example (from Appel)

Variables j, k are defined before the program.
Variables d, k, j are used after this program.

instruction alive
Iw g12() | jk
addi hk-1 .9,k
mul fgh j»g,h
Iw e 8(j) if
Iw m 16(j) | e,jf

Iw b f e,m,f
addi ce8 e,m,b
move dc c,m,b
addi km4 d,m,b
move jb d.k,b
d,k,j

C. Paulin (Université Paris-Saclay) Compilers 2025-26 221/258

Interference graph

Node degree :
b: 5|c: 2|d: 4]|e:
g: 3|h: 2|j: 6

C. Paulin (Université Paris-Saclay) Compilers 222/258

Coloring with 4 registers

We remove nodes of degree lessthan 3 : g, h, ¢, f.

Node degrees :
b: 4|d: 4]|e: 3
j: 3]k: 3| m: 3

C. Paulin (Université Paris-Saclay) Compilers 223/258

We remove nodes of degree less than 3 : j, k, e, m.
We find a color for remaining nodes.

©—@

C. Paulin (Université Paris-Saclay) Compilers 224/258

We reintroduce nodes : j, k, e, m.

C. Paulin (Université Paris-Saclay) Compilers 225/258

Coloring

We reintroduce nodes : g, h, c, f.

C. Paulin (Université Paris-Saclay) Compilers 226/258

Coloring with 3 registers

@ We do the same analysis considering nodes in the following order :
b7 d?j’ e’ f’ m7 k? g7 C? h

@ Nodes in bold have a degree greater than 3, causing possible problems.
@ with b yellow, d blue, j yellow, e blue, f red no color left for m.

C. Paulin (Université Paris-Saclay) Compilers 227/258

Transformation

@ We store min the memory at address M.
@ each acces to m uses a new variable m;

Iw g12() |k
addi hk-1 9.k
mul fgh j»g,h
Iw e 8(j) Bnf
Iw m1 16() | e,)f

sw mi M e,m1.f
Iw b f e,f
addi ces8 e,b
move dc c,b

Iw m2 M b,d
addi km2 4 d,m2,b
move jb d.k,b
d,k,j

C. Paulin (Université Paris-Saclay) Compilers 2025-26 228/258

Coloring with 3 registers

@ The node with degree 5 becomes two nodes my and m, of degree 2.

@ We consider the nodes in the following order :
j’g7 k) d?b7 e7 f’ m17m27c7h

@ There are no more problems.

C. Paulin (Université Paris-Saclay) Compilers 229/258

Result

niversité Pari: Compilers

Choosing the right variable ?

@ Heuristic :

e variable with high degree of interference

variable with few uses

e example : number of uses/def outside a loop + 10 times the number of def
and use inside a loop divided by the number of interferences

@ we choose a variable with the lowest value

C. Paulin (Université Paris-Saclay) Compilers 231/258

4-Optimizations

0 Program analysis and register allocation

@ Computing the interference graph

C. Paulin (Université Paris-Saclay) Compilers 232/258

Interference between variables

@ Two variables x and y interfers if there exist a point in the execution
where both values of x and y are simultaneously useful
° : a variable is alive at some program point if its current value will
be used in a possible execution scenario (so it is not set before next use)
e x=y+1 with x and y two different variables : at the entry point of this
instruction, y is alive but x is not
@ The dynamic execution paths cannot be decided, so we shall work with
approximations.
@ For correctness, it is enough to have a set which contains all the possible
execution paths :
e two branches of a conditional are possible
e the body of a loop can be taken an arbitrary number of times

C. Paulin (Université Paris-Saclay) Compilers 2025-26 233/258

Flow graph

@ The nodes are instructions

@ There is an edge form node i; to node iy if there is a scenario where the
instructions > will be executed just after the instruction i

@ The graph has both an entry point and an output point

C. Paulin (Université Paris-Saclay) Compilers 234/258

Graph for a sequence of instructions

An instruction might itself be represented as a subgraph (in case of loops or
conditionals)

C. Paulin (Université Paris-Saclay) Compilers 235/258

Graph for a conditional

if (e) { S } else { S }

51 S

C. Paulin (Université Paris-Saclay) Compilers 236/258

Graph for a loop

while (e) { S }

C. Paulin (Université Paris-Saclay) Compilers 237/258

Flow graph : remarks

@ Additional instructions such as break or switch will introduce different
edges.

@ All possible dynamic executions will correspond to paths in the graph, but
the graph may contain paths that will never be executed

@ Usually the flow graph construction and liveness analysis is done on a
low-level language RTL (Register Transfer Language)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 238/258

The RTL language

@ expressions are replaced by instructions

@ global variables are identified by labels in the memory

@ infinity of variables (seen as pseudo-registers)

@ each instruction contains the label of the next instruction (2 for branching)
@ the graph associate an instruction to each label

@ function calls are seen as a macro-instruction (just deal with arguments
and return value)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 239/258

RTL : abstract syntax trees

type instr =
Econst of reg int = label
Eunop of reg unop = reg =« label

Ebinop of reg
EGaccess of reg
EGassign of reg
Eload of reg reg = int = label

|

|

| binop = reg = reg =« label
|

|

|

| Estore of reg reg = int = label
|

|

|

|

|

|

string =« label
string =« label

* * * * * * * *

Emove of reg reg « label

Eprint of reg =« label

Eubranch of ubranch = reg = label = label
Ebbranch of bbranch = reg = reg =« label = label
Ecall of reg » string » reg list » label
Egoto of label

C. Paulin (Université Paris-Saclay) Compilers 2025-26 240/258

4-Optimizations

0 Program analysis and register allocation

@ Dataflow analysis

C. Paulin (Université Paris-Saclay) Compilers 241/258

Liveness equations

@ Each instruction change the liveness status of variables
@ Example : x=y+1
@ x is not alive just before the instruction but will probably be after (otherwise

the instruction is useless),
e it might be the last use of y, so y will not be alive after.

@ We consider both

o the set IN][i] of live variables before entering i,
e the set OUT]i] of live variables after the execution of /,

C. Paulin (Université Paris-Saclay) Compilers 242/258

Liveness equations

@ Our analysis
e USE][i] set of variables with a value used in the execution of /,
o DEF]i] set of variables with a value redefined by the execution of i
@ Data-flow equations :
e IN[i] = (OUTIi] \ DEF[i]) U USE]i]
o OUTI[i] = Usesuccp INIS]
@ Without loop, one can easily compute the values of IN and OUT starting
from the exit point

C. Paulin (Université Paris-Saclay) Compilers 243/258

a=0;

while (a < N) {
b=a+1
c=c+b
a=bx*2

}

return c;

C. Paulin (Université Paris-Saclay) Compilers

244/258

lterative computation

@ We compute two finite sets of variables for each instructions, this is a
lattice for the inclusion order (pointwise)

@ We look at the functional
®(IN, OUT)[i] = ((OUTIi] \ DEFIi]) U USET, U IN[s])
seSsuccli]
@ This is a monotonic function : if IN[i] C IN'[i] and OUT[i] C OUT'[i] for
each i then ®(IN, OUT)[i] o ¢(IN', OUT')[i]

@ This function has a least fixpoint that can be computed iteratively starting
from empty-sets (Tarski fixpoint theorem)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 245/258

Back to interference

@ Two variables interfers if there are in the same IN set
@ We deduce from this dataflow analysis an interference graph
@ We color the graph

@ Some of the local variables might be spilled in the call frame

@ we need at most two registers to access the values (rerun interference or
reserve registers)

e we might reuse the same kind of analysis for allocating space for variables in
the stack-frame (two different vvariables might reuse the same spot)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 246/258

4-Optimizations

0 Program analysis and register allocation

@ Register allocation for function call

C. Paulin (Université Paris-Saclay) Compilers 247/258

Function call

@ So far we have tried to optimize registers use for local variables in a
function.
@ Our protocol for a function call is
e Put arguments in $a0, .., $a3 plus the stack if necessary
@ Save caller-saved registers
e Call the function
o Restore caller-saved registers
@ If some of the registers $ai, $vi are not used, for the call, they could serve
for temporary computations

@ We would like to avoid to save registers if its not needed

C. Paulin (Université Paris-Saclay) Compilers 2025-26 248/258

Optimization of function call

@ Consider the registers as pseudo-variables
@ Explicit the transfers during the call
Exemple x=f(x1,x2);

$al0=x1;
$al=x2;
si=$t0;
call f;
x=$vO0 ;

$t0=si;

C. Paulin (Université Paris-Saclay) Compilers

249/258

Preference edges

@ We can do liveness analysis to determine which variables are really
needed
@ In the interference graph, the registers are pre-colored nodes
@ The code contains many transfers instructions x=y;
o They are not considered for interference (but the interference might be
cause by other instructions)
o If the 2 variables in the move doe not interfer, we introduce a preference
edge between them, which indicates that putting them in the same register
would be a good idea

@ Using the same register for two variables might put too much interference
constraints and generate spilling (worse than a move)

@ Criteria for merging 2 nodes x and y without loosing the possibility to
color the graph
@ (Briggs) The number of neighbors of the merged node precolored or with a
degree greater than k is strictly less than k
o (George-Appel) : any neighbor of x which is precolored or with a degree
greater than k is also a neighbor of y

C. Paulin (Université Paris-Saclay) Compilers 2025-26 250/258

Strategy for coloring

@ simplify nodes of degree < k not involved in a move
@ merge nodes related by a preference, if they satisfy the criteria
@ do additional simplify/merge if possible

@ if there is a low-degree node involved in a move, remove the mode and
do the simplification

@ if there is no more simplification, choose a variable to be stored in the
stack

C. Paulin (Université Paris-Saclay) Compilers 2025-26 251/258

The live variables at the end of the program are d, K, |

g=mem[j +12];
h=k-1;
f=g+h;
e=mem|[j +8];
m=mem[j +16];
b=mem[f];
c=e+8;

d=c;

k=m+4;

j=b;

C. Paulin (Université Paris-Saclay) Compilers 252/258

4-Optimisations

0 Program analysis and register allocation

@ Other optimizations

C. Paulin (Université Paris-Saclay) Compilers 253/258

Instruction selection

@ try to identify when addi can be used instead of add

@ use 1s1 or 1sr for multiplication or division by 2%

@ add unary operations Addi nLsl n...to the abstract syntax tree
@ special care should be taken if some expressions do side-effects

C. Paulin (Université Paris-Saclay) Compilers 254/258

Examples of simplification

e+0 —e
0O+e —e
e-0 —e
e+n — Addi(n)e
e—n — Addi(—n)e
n+e — Addi(n)e
nfophn —n n résultat du calcul
(e1+m)+(e2+m) — (e +e)+(n+m)
(es+n)+e —(e1+e)+n
eir+(ex2+n) —(e1+e)+n

C. Paulin (Université Paris-Saclay) Compilers 255/258

Compile conditions without instructions

@ A condition is just a way to choose between 2 destinations

@ The general scheme is to evaluate the condition to 0/1 and then branch
depending on the value

@ Given 2 destination labels /abt and /abf, we might generate code which
goes to /abt if the condition is true and labf otherwise

let rec compile_con labt labf = function
Not(e) —> compile_con labf labt e
| And(el,e2) -> let le = new_label() in
compile_con le labf el @@
label le @@
compile_con labt labf e2
| Lt(al,a2) -> blt al a2 labt @@
label labf

C. Paulin (Université Paris-Saclay) Compilers 2025-26 256/258

Alternative allocation strategy

(See project)
@ assign numbers to instructions in a linear way
@ performs liveness analysis
@ compute for each variable a liveness interval (the variable is not alive
outside this interval)
@ sort the variables by increasing appearance date,

@ look at each variable in order, assumes x starts at instruction i

free registers used by variables which are no longer alive

assign a register to x if available

if no register are available, store x in the stack or choose to put another
(more appropriate) variable in the stack to free a register for x

C. Paulin (Université Paris-Saclay) Compilers 2025-26 257/258

@ Optimizing is important but hard
@ There is no “optimal” optimization
@ Liveness analysis :

o Performing dataflow analysis
@ Building the interference/preference graph

@ Register/memory allocation
@ Heuristics for coloring

C. Paulin (Université Paris-Saclay) Compilers 258/258

	Program analysis and register allocation
	Introduction to the problem
	Interferences, allocation via coloring
	Computing the interference graph
	Dataflow analysis
	Register allocation for function call
	Other optimizations

