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Introduction

We need temporary memory for
expression evaluation
local variables
function arguments

The amount of memory is not always known at compile-time
form a stack to store the values

Loading/Writing values in the stack is costly
try to use registers instead, as much as possible

Main reference for this part :
Andrew. W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.
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The IMP language

We consider here a core imperative programming language IMP
only integer variables

A program consists of global variable declarations and function
declarations
Instructions

putchar(e); print character with ASCII code e
e; evaluate the expression e
x=e; put the value of expression e in variable x
if (e) { list i1 } else { list i2 } conditional
while(e) { list of instructions } while loop
return(e); exit function with value e
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The IMP language : abstract syntax trees

type expression =
| Cst of i n t
| Bool of bool
| Var of s t r i n g
| Binop of binop * expression * expression
| Ca l l of s t r i n g * expression l i s t

type i n s t r u c t i o n =
| Putchar of expression
| Set of s t r i n g * expression
| I f of expression * sequence * sequence
| While of expression * sequence
| Return of expression
| Expr of expression

and sequence = i n s t r u c t i o n l i s t

type f unc t i on_de f = {
name : s t r i n g ;
params : s t r i n g l i s t ;
l o c a l s : s t r i n g l i s t ;
code : sequence ;

}

type program = {
g loba ls : s t r i n g l i s t ;
f u nc t i o ns : f unc t i on_de f l i s t ;

}
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Function call

Try to put local variables in registers
First possibility : associate a variable to a register for the duration of body
execution
non optimal
function l i v e ( n ) {

var i ;
var j ;
i =0; while ( i < n ) { putchar (97+ i ) ; i = i +1; }
putchar ( 1 0 ) ;
j =0; while ( j < 10) { putchar (48+ j ) ; j = j +1; }
putchar ( 1 0 ) ;

}

Two different local variables might safely use the same register
find variables that cannot share the same register
optimize which registers are given to each variables
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Storing intermediate values

Store intermediate values in the stack (only 2 registers are needed)
Use dedicated registers as much as possible and when no more registers
are available, store oldest values in the stack
Transform the problem :

Given an expression e, we transform the code for evaluating e into a
sequence of elementary instructions involving at most one operation, with
operands being variables or constants.

Use optimisation of local variables allocation to do the job
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Code for transformation

l e t is_atom = function | Cst _ | Bool _ | Var _ −> true | _ −> fa lse

l e t t r a n s f ( e : expr ) : sequence * expr =
l e t i = re f 0 in
l e t newvar ( ) = l e t v = P r i n t f . s p r i n t f " _r_%d " ! i in i n c r i ; v
in
l e t rec t r e c l c =

function
e when is_atom e −> lc , e

| Binop ( o , e1 , e2 ) −>
l e t lc1 , a1 = t r e c l c e1
in l e t lc2 , a2 = t r e c l c1 e2
in l e t x = newvar ( )
in ( Set ( x , Binop ( o , a1 , a2 ) ) : : lc2 , Var x )

| Ca l l ( f , l e ) −>
l e t ( l c , l a ) =

L i s t . f o l d _ l e f t
( fun ( lc1 , la1 ) e −> l e t lc2 , a = t r e c l c1 e in ( lc2 , a : : la1 ) )

( l c , [ ] ) l e
in l e t x = newvar ( )
in ( Set ( x , Ca l l ( f , L i s t . rev l a ) ) : : l c , Var x )

in l e t ( code , a t ) = t r e c [ ] e in ( L i s t . rev code , a t )
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Example

val ex1 : expr =
Binop (Add ,

Ca l l ( " f " ,
[ Binop (Add , Var " x " , Binop (Add , Var " y " , Cst 4 ) ) ;
Binop (Add , Cst 4 , Cst 4 ) ] ) ,

Binop (Add , Var " z " , Var " x " ) )
# l e t _ = t r a n s f ex1 ; ;
− : sequence * expr =
( [ Set ( " _r_0 " , Binop (Add , Var " y " , Cst 4 ) ) ;

Set ( " _r_1 " , Binop (Add , Var " x " , Var " _r_0 " ) ) ;
Set ( " _r_2 " , Binop (Add , Cst 4 , Cst 4 ) ) ;
Set ( " _r_3 " , Ca l l ( " f " , [ Var " _r_1 " ; Var " _r_2 " ] ) ) ;
Set ( " _r_4 " , Binop (Add , Var " z " , Var " x " ) ) ;
Set ( " _r_5 " , Binop (Add , Var " _r_3 " , Var " _r_4 " ) ) ] ,

Var " _r_5 " )
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From interference graph to register allocation

We build a graph, called interference graph
Vertex : local variable
Edge : between x and y when they interfere which means they cannot share
the same register

Finding a proper register allocation becomes a graph colouring problem
The colors are the available registers
Two adjacent vertexes cannot have the same color

If the graph is planar, we only need 4 registers
Solving the problem in an optimal way in general is NP-complete
We shall use heuristics instead

choose one variable, remove it from the graph
try to recursively color this simpler graph
put back the variable and try to find for it a color
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Algorithm for k -coloring

if the graph is empty : problem solved
if the graph has one node x with degre strictly less than k then

Build a graph G′ by removing x and all edges with x
Color G′

Put back the node x on this colored graph : not all the k colors are used by
the neighbors so there is a color available for x

if all the nodes have a degree at least k , choose as before a node x
remove x and color the remaining graph
look at the colors used by the neighbors of x :

if there is one color left, give it to x
otherwise mark x to be stored in the stack (transfering the value, requires one
register, but with a very short period)
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Example (from Appel)

Variables j , k are defined before the program.
Variables d , k , j are used after this program.

instruction alive
lw g 12(j) j,k
addi h k -1 j,g,k
mul f g h j,g,h
lw e 8(j) j,f
lw m 16(j) e,j,f
lw b f e,m,f
addi c e 8 e,m,b
move d c c,m,b
addi k m 4 d,m,b
move j b d,k,b

d,k,j
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Interference graph

e f h

c m j

b d k g

Node degree :
b : 5 c : 2 d : 4 e : 4 f : 3
g : 3 h : 2 j : 6 k : 4 m : 5
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Coloring with 4 registers

We remove nodes of degree less than 3 : g, h, c, f .

e

m j

b d k

Node degrees :
b : 4 d : 4 e : 3
j : 3 k : 3 m : 3
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Coloring

We remove nodes of degree less than 3 : j , k , e, m.
We find a color for remaining nodes.

b d
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Coloring

We reintroduce nodes : j , k , e, m.

e

m j

b d k
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Coloring

We reintroduce nodes : g, h, c, f .

e f h

c m j

b d k g
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Coloring with 3 registers

We do the same analysis considering nodes in the following order :
b,d , j ,e, f ,m,k,g, c,h
Nodes in bold have a degree greater than 3, causing possible problems.
with b yellow, d blue, j yellow, e blue, f red no color left for m.

e f h

c m j

b d k g
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Transformation

We store m in the memory at address M.
each acces to m uses a new variable mi

lw g 12(j) j,k
addi h k -1 j,g,k
mul f g h j,g,h
lw e 8(j) j,f
lw m1 16(j) e,j,f
sw m1 M e,m1,f
lw b f e,f
addi c e 8 e,b
move d c c,b
lw m2 M b,d
addi k m2 4 d,m2,b
move j b d,k,b

d,k,j
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Coloring with 3 registers

The node with degree 5 becomes two nodes m1 and m2 of degree 2.

e f h

c m1 m2 j

b d k g

We consider the nodes in the following order :

j ,g, k ,d ,b,e, f ,m1,m2, c,h

There are no more problems.
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Result

e f h

c m1 m2 j

b d k g
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Choosing the right variable?

Heuristic :
variable with high degree of interference
variable with few uses
example : number of uses/def outside a loop + 10 times the number of def
and use inside a loop divided by the number of interferences
we choose a variable with the lowest value
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4-Optimizations

1 Program analysis and register allocation
Introduction to the problem
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Computing the interference graph
Dataflow analysis
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Other optimizations
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Interference between variables

Two variables x and y interfers if there exist a point in the execution
where both values of x and y are simultaneously useful
Liveness : a variable is alive at some program point if its current value will
be used in a possible execution scenario (so it is not set before next use)

x=y+1 with x and y two different variables : at the entry point of this
instruction, y is alive but x is not

The dynamic execution paths cannot be decided, so we shall work with
approximations.
For correctness, it is enough to have a set which contains all the possible
execution paths :

two branches of a conditional are possible
the body of a loop can be taken an arbitrary number of times
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Flow graph

The nodes are instructions
There is an edge form node i1 to node i2 if there is a scenario where the
instructions i2 will be executed just after the instruction i1
The graph has both an entry point and an output point

C. Paulin (Université Paris-Saclay) Compilers 2025–26 234 / 258



Graph for a sequence of instructions

[i1; . . . ; in]

i1

i2

i3

. . .

in

An instruction might itself be represented as a subgraph (in case of loops or
conditionals)
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Graph for a conditional

if (e) { s1 } else { s2 }

e

s1 s2
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Graph for a loop

while (e) { s }

e

s
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Flow graph : remarks

Additional instructions such as break or switch will introduce different
edges.
All possible dynamic executions will correspond to paths in the graph, but
the graph may contain paths that will never be executed
Usually the flow graph construction and liveness analysis is done on a
low-level language RTL (Register Transfer Language)
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The RTL language

expressions are replaced by instructions
global variables are identified by labels in the memory
infinity of variables (seen as pseudo-registers)
each instruction contains the label of the next instruction (2 for branching)
the graph associate an instruction to each label
function calls are seen as a macro-instruction (just deal with arguments
and return value)
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RTL : abstract syntax trees

type i n s t r =
| Econst of reg * i n t * l a b e l
| Eunop of reg * unop * reg * l a b e l
| Ebinop of reg * binop * reg * reg * l a b e l
| EGaccess of reg * s t r i n g * l a b e l
| EGassign of reg * s t r i n g * l a b e l
| Eload of reg * reg * i n t * l a b e l
| Estore of reg * reg * i n t * l a b e l
| Emove of reg * reg * l a b e l
| E p r i n t of reg * l a b e l
| Eubranch of ubranch * reg * l a b e l * l a b e l
| Ebbranch of bbranch * reg * reg * l a b e l * l a b e l
| Eca l l of reg * s t r i n g * reg l i s t * l a b e l
| Egoto of l a b e l
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4-Optimizations

1 Program analysis and register allocation
Introduction to the problem
Interferences, allocation via coloring
Computing the interference graph
Dataflow analysis
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Other optimizations
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Liveness equations

Each instruction change the liveness status of variables
Example : x=y+1

x is not alive just before the instruction but will probably be after (otherwise
the instruction is useless),
it might be the last use of y, so y will not be alive after.

We consider both
the set IN[i] of live variables before entering i ,
the set OUT [i] of live variables after the execution of i ,
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Liveness equations

Our analysis
USE [i] set of variables with a value used in the execution of i ,
DEF [i] set of variables with a value redefined by the execution of i

Data-flow equations :
IN[i] = (OUT [i] \ DEF [i]) ∪ USE [i]
OUT [i] =

⋃
s∈SUCC[i] IN[s]

Without loop, one can easily compute the values of IN and OUT starting
from the exit point
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Example

a=0;
while ( a < N) {

b=a+1
c=c+b
a=b*2

}
r e t u r n c ;
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Iterative computation

We compute two finite sets of variables for each instructions, this is a
lattice for the inclusion order (pointwise)
We look at the functional

Φ(IN,OUT )[i] = ((OUT [i] \ DEF [i]) ∪ USE [i],
⋃

s∈SUCC[i]

IN[s])

This is a monotonic function : if IN[i] ⊆ IN ′[i] and OUT [i] ⊆ OUT ′[i] for
each i then Φ(IN,OUT )[i] ⊆2 Φ(IN ′,OUT ′)[i]
This function has a least fixpoint that can be computed iteratively starting
from empty-sets (Tarski fixpoint theorem)
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Back to interference

Two variables interfers if there are in the same IN set
We deduce from this dataflow analysis an interference graph
We color the graph
Some of the local variables might be spilled in the call frame

we need at most two registers to access the values (rerun interference or
reserve registers)
we might reuse the same kind of analysis for allocating space for variables in
the stack-frame (two different vvariables might reuse the same spot)
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4-Optimizations
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Function call

So far we have tried to optimize registers use for local variables in a
function.
Our protocol for a function call is

Put arguments in $a0, .. , $a3 plus the stack if necessary
Save caller-saved registers
Call the function
Restore caller-saved registers

If some of the registers $ai, $vi are not used, for the call, they could serve
for temporary computations
We would like to avoid to save registers if its not needed
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Optimization of function call

Consider the registers as pseudo-variables
Explicit the transfers during the call

Exemple x=f(x1,x2);

$a0=x1 ;
$a1=x2 ;
s i =$t0 ;
c a l l f ;
x=$v0 ;
$t0= s i ;
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Preference edges

We can do liveness analysis to determine which variables are really
needed
In the interference graph, the registers are pre-colored nodes
The code contains many transfers instructions x=y;

They are not considered for interference (but the interference might be
cause by other instructions)
If the 2 variables in the move doe not interfer, we introduce a preference
edge between them, which indicates that putting them in the same register
would be a good idea

Using the same register for two variables might put too much interference
constraints and generate spilling (worse than a move)
Criteria for merging 2 nodes x and y without loosing the possibility to
color the graph

(Briggs) The number of neighbors of the merged node precolored or with a
degree greater than k is strictly less than k
(George-Appel) : any neighbor of x which is precolored or with a degree
greater than k is also a neighbor of y
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Strategy for coloring

simplify nodes of degree < k not involved in a move
merge nodes related by a preference, if they satisfy the criteria
do additional simplify/merge if possible
if there is a low-degree node involved in a move, remove the mode and
do the simplification
if there is no more simplification, choose a variable to be stored in the
stack
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Example

The live variables at the end of the program are d, k, j

g=mem[ j +12 ] ;
h=k −1;
f =g*h ;
e=mem[ j + 8 ] ;
m=mem[ j +16 ] ;
b=mem[ f ] ;
c=e+8;
d=c ;
k=m+4;
j =b ;
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Instruction selection

try to identify when addi can be used instead of add
use lsl or lsr for multiplication or division by 2k

add unary operations Addi n Lsl n . . .to the abstract syntax tree
special care should be taken if some expressions do side-effects
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Examples of simplification

e + 0 −→ e
0 + e −→ e
e − 0 −→ e
e + n −→ Addi(n) e
e − n −→ Addi(−n) e
n + e −→ Addi(n) e

n1 op n2 −→ n n résultat du calcul
(e1 + n1) + (e2 + n2) −→ (e1 + e2) + (n1 + n2)

(e1 + n) + e2 −→ (e1 + e2) + n
e1 + (e2 + n) −→ (e1 + e2) + n
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Compile conditions without instructions

A condition is just a way to choose between 2 destinations
The general scheme is to evaluate the condition to 0/1 and then branch
depending on the value
Given 2 destination labels labt and labf, we might generate code which
goes to labt if the condition is true and labf otherwise

l e t rec compile_con l a b t l a b f = function
Not ( e ) −> compile_con l a b f l a b t e

| And ( e1 , e2 ) −> l e t l e = new_label ( ) in
compile_con l e l a b f e1 @@
l a b e l l e @@
compile_con l a b t l a b f e2

| L t ( a1 , a2 ) −> b l t a1 a2 l a b t @@
l a b e l l a b f
. . . .
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Alternative allocation strategy

(See project)
assign numbers to instructions in a linear way
performs liveness analysis
compute for each variable a liveness interval (the variable is not alive
outside this interval)
sort the variables by increasing appearance date,

look at each variable in order, assumes x starts at instruction i
free registers used by variables which are no longer alive
assign a register to x if available
if no register are available, store x in the stack or choose to put another
(more appropriate) variable in the stack to free a register for x
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Summary

Optimizing is important but hard
There is no “optimal” optimization
Liveness analysis :

Performing dataflow analysis
Building the interference/preference graph

Register/memory allocation
Heuristics for coloring
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