Programming Languages, semantics, compilers

Assembly code
C. Paulin (courtesy of T. Balabonski)
M1 MPRI 2025-26

0 A target language : assembly code
@ MIPS architecture and binary code
@ Assemby language
@ Functions and stack-frames
@ Call convention
@ Optimizing tail-recursive functions

C. Paulin (Université Paris-Saclay) Compilers 157/209

@ Multiple steps :
@ program analysis :
find the structure and meaning of the program, reject bogus entries
@ program synthesis :
transform the abstract syntax tree of the source program into another
program, called the target program, “equivalent”
@ Possible targets :
e another high-level language (C, javascript,. ..)

° : low-level code for a virtual machine (java, caml, python) that will
be interpreted

° language : directly executable by the machine after assembling
and linking

2025-26 158/209

C. Paulin (Université Paris-Saclay) Compilers

MIPS architecture

MIPS stands for (Microprocessor without Interlocked Pipeline Stages)

Processor RISC (Reduced Instruction Set Computer), 32 bits, precursor
of modern RISC-V architectures.

used in embedded systems, printers, smartphones. ..
a processor, with a few registers and computing units
a large amount of memory to store data and intructions

C. Paulin (Université Paris-Saclay) Compilers 2025-26 159/209

Binary code for MIPS

@ Memory unit : a byte (8 bits) represented in hexa by 2 characters
@ 32 bits architecture : a word corresponds to 4 bytes (8 hexa characters)
@ Each instruction is encoded on a 32 bits word
@ opcode : 6 first bits encode the instruction, the rest are the arguments
@ 32 general-purpose registers (need 5 bits to identify them)
e computations are done between registers (a few accept an argument which
is an immediate value - constant)

@ General memory contains 232 bytes, each one has an address (from
0x00000000 to OxFFFFFFFF),
Mainly use addresses which are a multiple of 4

C. Paulin (Université Paris-Saclay) Compilers 2025-26 160/209

Binary code for MIPS

@ 3 forms of instructions depending on the opcode
e R-instruction : involves 3 registers, 2 operands and a destination (11 bits left)
e |-instruction : involves 2 registers and an immediate value on 16 bits
e J-instruction : jump to a target represented on 26-bits (the 2 last bits are
ommited because they should be 00)
@ A uniform execution model
e fetch the instruction
o decode the instruction
@ execute the instruction
o do the memory transfers
@ update the registers (including the code pointer)

(the different steps are pipelined)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 161/209

Binary code vs assembly language

@ Binary code combines two difficulties
o low level computation model
@ binary (often arbitrary) encoding of operations and data
e limitation because of the size of the instruction : (an immediate value in an
addition can only contain 16 bits)
@ Assembly language (an high-level machine language)
@ names instead of binary code
@ for instructions, registers, addresses. . .
@ pseudo instructions (a small sequence of instructions) for current operations
o focus on the low-level model of execution, not the encoding

C. Paulin (Université Paris-Saclay) Compilers 2025-26 162/209

Assembly code MIPS

0 A target language : assembly code

@ Assemby language

C. Paulin (Université Paris-Saclay) Compilers 163/209

Assembly code MIPS : advantage

@ explicit names for operations (binary instructions but also
pseudo-instructions)

@ labels for identifying code addresses
@ an easy way to position static data

C. Paulin (Université Paris-Saclay) Compilers

164/209

number name purpose
$0 $zero | valueis always 0
$1 Sat Assembler Temporary (reserved)
$2,%$3 $v0, svl | returned value
$4 — $7 $a0-$a3 | arguments of a functions
$8 — $15,924,$25 | st0-st9 | temporary values
$16 — $23 $s0-$s7 | saved temporary values
$26, $27 $k0, $k1 | Kernel (reserved)
$28 Sgp Global pointer (do not touch)
$29 $sp Stack pointer, on top, last value
$30 Sfp Frame pointer, , for function call
$31 Sra Return address, for function call

Other registers, cannot be addressed explicitely, used via specific instructions
@ Spc for program counter

@ Shi, $1o for multiplication (keep 64 bits) between integers and division
(bo both division and reminder)

C. Paulin (Université Paris-Saclay)

Compilers 2025-26

165/209

Instructions between registers

@ adding 2 registers Srs and $rt, the result goes in $rd
add $rd, rs, SSrt

fails if the sum overflows
same for mul, sub, div, and, or (bitwise).

@ adding 1 register $rs and an immediate number n (16 bits), the result
goes in $rd

addi $rd, $rs,n
same for andi, ori
@ négation of $rs goes in $rd
neg S$rd, Srs
same for abs, non

C. Paulin (Université Paris-Saclay) Compilers 166/209

Shift and rotate operations

@ shift the word in $rs to the left, inserting n zeros
sll $rd, $Srs,n

Same for sr1 (right logical) and sra (right arithmetical : insert the sign
bit), rol (left rotation), ror (right rotation),

C. Paulin (Université Paris-Saclay) Compilers 167/209

Comparison

@ compare 2 registers Srs and Srt, theresultis 1if Srs<$rt and 0
otherwise and it goes in $rd.

slt S$rd, Srs, Srt

same for sle, sgt, sge, seq, sne, sltu, sleu, sgtu, sgeu for
unsigned versions

@ compare 1 register $rs and an immediate value n, the result is 1 if
$rs<n and 0 otherwise and goes in $rd.

slti $rd, Srs,n

same for slei, sqgti, sgei, sltiu, sleiu, sgtiu, sgeiu for unsigned
versions

C. Paulin (Université Paris-Saclay) Compilers 168/209

Branch, jump

@ Branch instructions : relative jump from current address, a number
represented on 16 bits (local move for loops, conditional. . .)
if Srs<$rt then goes to instruction etig
blt Srs,S$rt,etiqg
same for ble, bgt, bge, beq, bne, bltu, bleu, bgtu, bgeu for
unsigned versions
if Srs<0 then goes to instruction etiq
bltz $rs,etiqg

same for blez, bgtz, bgez, beqz, bnez
@ Jump instruction : absolute jump to an address given explicitely (26 bits)
or in a register
e jump to the address etiq
J etiqg
@ save the next code address in Sra and jump to the address etig
jal etiqg
@ jump to the address stores in register S$rs
Jjr Srs
jral to save the next code address and jump

C. Paulin (Université Paris-Saclay) Compilers 2025-26 169/209

Compiling conditionals

#Code : condition evaluated in $t0
beqz $t0, lab_else

#Code : branch then

b lab_end

lab_else:

#Code : branch else

lab_end

@ generate 2 new labels for each conditional

@ don’t forget to skip the code of the else branch after executing the then
branch

C. Paulin (Université Paris-Saclay)

Compilers 170/209

Compiling loops

b lab_test

lab_loop:

#Code : body

lab_test

#Code : condition evaluated in $t0
bnez $t0, lab_loop

@ two labels, one for the loop and the other for the test

@ atestis always performed after each loop so putting the test code just
after the body avoids an extra jump at each iteration

C. Paulin (Université Paris-Saclay) Compilers 171/209

Memory access

@ A memory address is composed of a base address (a value given by a
label etiq or stored in a register $r) plus a shift number d (16 bits, signed)
It is written : d (Sr) or etig+d

@ load word : place the value stored at address d ($rs) in $Srd
1w $rd d(Srs)
Same for 1b, 1h, 1d, to read bytes, half-words or double (using also next
register)
@ store word : place the value of $rt at address d ($rs)
sw Srt d($Srs)
Same for sb, sh, sd, to read bytes, half-words or double

@ load address : place the value of the address itself d ($rs) (not its
contents) in register $rd

la Srd d(Srs)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 172/209

System calls

@ For input/output, memory allocation, the assembly calls the operating
system

@ In the MARS simulator : instruction syscal1l, with a parameter in $v0
which gives the operations and possible argument in $a0

service | code arg. | result
1 (integer)
printing | 4 (string) $a0
11 (ascii)
read input | 5 (integer) $v0
stop | 10
memory extension | 9 $a0 | $vO

C. Paulin (Université Paris-Saclay) Compilers 2025-26 173/209

Static data

@ Data with size known at compile time can be put in the .data segment
@ Example : an array of integers, a string (1 byte by character) ...

.data
t: .word 12345
s: .asciiz "Hello_world!"

@ When initial values are unknown, a default value may be used (or another
assembly directive)

@ the label gives the address of the first value, the remaining elements are
accessed by pointer arithmetic (+4 for words, +1 for bytes values)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 174/209

Dynamic data : motivations

@ Evaluating an expression requires storing intermediate values

@ The number of intermediate values depends on the shape of the
expression

@ Assume an expression Bop(o,e1,e2), we need enough registers to compute
e, then one register $r to store the value of e1 and then enough registers
(different from $r) to compute e2.
Unless e2 is an immediate value, we need at least two registers, and now if
the expression is Bop(o,e1,Bop(0,e2,e3)) we shall need at least 3 different
registers, and so on. ..

@ We need to store intermediate values, we shall dedicate part of the
memory to implement a stack

C. Paulin (Université Paris-Saclay) Compilers 2025-26 175/209

Implementing a stack

.text .data top bottom
| code | static data | = stack |

@ The bottom of the stack is at the highest address
@ The register ssp gives the address of the last(top) element of the stack

@ Each time an element is added on the stack, the pointer should be
decreased by 4

C. Paulin (Université Paris-Saclay) Compilers 176/209

Standard operations with the stack

@ Read the value on top of the stack (peek),
lw $t0, 0($sp)

Accessing deeper values by adding 4 x n, with n the index. The 4th
element has index 3 and is accessed with a shift of 12 bytes.

lw $t0, 12($sp)

@ Adding an element on the stack requires changing $sp and writing the
value
addi $sp, $sp, -4
sw $t0, 0($sp)
@ Removing an element just requires just changing $sp
addi $sp, $sp, 4
The pop instruction transfers the value on top of the heap to a register

lw $t0, 0($sp)
addi $sp, $sp, 4

C. Paulin (Université Paris-Saclay) Compilers 2025-26 177/209

Dynamic data : the heap

@ Some time a data is created during execution
@ Storage in the stack is only for temporary computations

o if an array is created during a function call, it will disappear after the function
returns (even if its address is returned by the function, it will point on a
memory portion reused for other purposes)

@ Need of a space with persistent data : the heap

C. Paulin (Université Paris-Saclay) Compilers 178/209

Implementing the heap

.text .data brk Ssp
| code | static data | heap |~] stack |

@ the brk pointer (memory break) points on the first free space on the heap
@ the operating system is responsible for allocating memory

@ syscall with parameter sv0=9, uses $a0 for the amount of bytes needed,
returns the old value of brk (address of the first byte of the newly allocated
space) in $vO0

C. Paulin (Université Paris-Saclay) Compilers 2025-26 179/209

instruction $a0 $v0 $t0 brk
0x10040000
1i $a0, 24 24 0x10040000
1i $v0, 9 24 9 0x10040000
syscall 24 | 0x10040000 0x10040018
1i $to, 1 24 | 0x10040000 | 1 0x10040018
sw $t0, 0($v0) 24 | 0x10040000 | 1 0x10040018
1i $t0, 32 24 | 0x10040000 | 32 || 0x10040018
sw $t0, 20($v0) 24 | 0x10040000 | 32 || 0x10040018

After theses commands, the heap has the following shape
The address ©; is the initial position of break brk (0x10040000) and Q; is the
new position after calling sbrk (0x10040018).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 180/209

Assembly code : MIPS

0 A target language : assembly code

@ Functions and stack-frames

C. Paulin (Université Paris-Saclay) Compilers 181/209

Function calls

let f x = x + 7 in
let gxy=1»1letz=f (x+y+ 6)inz » z
in g0o0

@ We have two function definitions f and g
@ The body of g calls function f

@ gisthe caller and f the callee
@ Xx is the formal parameter of f and x « 7 is the returned value
o x+y+6 is the effective parameter (or argument) of f

C. Paulin (Université Paris-Saclay) Compilers 182/209

Function calls in assembly

@ In the assembly language we have code for f and code for g

@ The code for f needs to know where to find the value of its argument (for
instance in $a0) and where to return the result (for instance in $v0)

@ The code for g put the value of the effective parameter in $a0 and then
tranfers the code pointer to the address of f, and expects the resultin $v0

@ But how can f know where to return after finishing ? (we usually have
several different calls to the same function)

@ g should save the return point before calling f, in a designated place, this
is the purpose of the $ra register.

@ the caller save the return point in $ra before jumping to the f code
address

jal £
@ at the end of f, a jump is done back to the address stored in Sra

jr Sra

C. Paulin (Université Paris-Saclay) Compilers 2025-26 183/209

Imbricated calls

@ What happens if the function f itself calls another function h ?

o Need to give $ra to h for a safe return in f, but the return address to g will
be lost

@ Other registers also might be used both by f and g with a risk of collision

@ The number of imbricated calls is unknow at compile-time (think of a
recursive function)

@ The solution is to save the values needed for a function call in a “frame”.

@ A callee always finishes before the caller can finish, and then its frame
can be destroyed. So the frame can safely be put on the stack, it is called
a

@ The structure of the stack-frame is known at compile-time
@ On the stack : all frames of the current active calls

C. Paulin (Université Paris-Saclay) Compilers 2025-26 184/209

Format of a stack frame

Sfp
1

[local variables | saved registers | arguments ||

@ Sra is one of the saved registers

@ the register $fp (frame-pointer) contains the address of the last saved
register

@ other elements of the frame are accessed relatively to the $fp address

185/209

C. Paulin (Université Paris-Saclay) Compilers

@ stack frame for f (one parameter, no local variables)

(-4) Sfp (+4)
1
Sra ‘ X
saved arg.

@ stack frame for g (two parameters, one local variable)

(-8) (-4 Sfp (+4) (+8)
{
z Sra ‘ X ‘ vy
loc. var. saved arg.

C. Paulin (Université Paris-Saclay) Compilers 186/209

Compiling a call

@ Atthe $fp address in the callee frame, we shall store the previous value
of $fp (to be restored before the callee returns)
@ In our example, on the stac, we shall have

o the frame of the main function
o the frame of the g function
o the frame of the £ function

$sp Sfp
4 4 ©4)
a, [0,] 6 T —[an[@ [0]0
Sra Sfp X z Sra S$fp x
frame 2 : f6 frame 1: g00 frame 0 : main

C. Paulin (Université Paris-Saclay) Compilers 2025-26 187/209

Assembly code : MIPS

0 A target language : assembly code

@ Call convention

C. Paulin (Université Paris-Saclay) Compilers 188/209

@ Agrement between the caller and the callee on who is doing what and
where

@ Simple version

1. Caller, before the call : evaluate the arguments, put them on the stack (last
one first) call jal (or jalr), the callee is now in charge.

2. Callee, beginning of the call : saves values of $fp and $ra on the stack,
reserve space for local values, set $fp to the current address of the frame.

3. Callee : execute the body of the function.

4. Callee, end of the call : put the result in the dedicated register ($t0,$v0),
restore $fp and $ra, free stack space reserved at step 2, et give control back
to the caller jr $ra.

5. Caller, after the call : remove the arguments on the stack.

@ The stack frame is created at steps 1 and 2 and destroyed at step 4 and 5
@ The stack is back to its initial form with computed value in $t0 (or $v0).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 189/209

We use FUN syntax, but without considering functions as first class values

let rec power a n =
if n =0 then 1
else let b = power (axa) (n>>1)
in if n & 1 = 0 then b else a « b
in power 2 9
Stack frame
Sfp
1

[2]zal e’ [a]n]

On accede aux arguments

@ access to a and n respectively at the adresses $fp+4 and $fp+8, and to
the local variable b at the adresse $fp-8.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 190/209

Protocol for calling power

Call power 2 9 : put the arguments on the stack, call power

i $t0, 9 # load 9
addi $sp, $sp, -4 # store
sw $t0, 0($sp)

I $t0, 2 # load 2
addi $sp, $sp, -4 # store
sw $t0, 0($sp)

jal power

The power function build the frame

addi $sp, $sp, -12 # alloc (2 reg. + loc. var.)
sw $fp, 8($sp) # save fp
swW $ra, 4($sp) # save ra
addi $fp, Psp, 8 # set fp

C. Paulin (Université Paris-Saclay) Compilers 2025-26 191/209

Protocol for calling power

After some computation, including recursive calls, we return a«b in $t0
The local variable b contains the value 256 (power(4, 4)).

$sp Sfp
! 4

1256 [ra| £p' [2]9] ... caller context
lw $t0, 4($fp) # 10 <- a
lw $t1, -8($fp) # 11 <— b
mul $t0, $t0, St # 10 <- a+b
lw $ra, 4($sp) # restore ra
Iw $fp, 8($sp) # restore fp
addi $sp, Psp, 12 # clean the stack
jr $ra # return to g

C. Paulin (Université Paris-Saclay) Compilers 2025-26 192/209

Protocol for calling power

Back in main after the call

addi $sp, $sp, 8 # clean the stack
move $a0, $t0 # print the result
li $vo, 1

syscall # affichage

C. Paulin (Université Paris-Saclay) Compilers 193/209

Code for power

power :
build the stack frame (step 2)

052 addi $sp, $sp, -12

056 sw $fp, 8($sp)

060 sW $ra, 4($sp)

064 addi $fp, $sp, 8
body of the function (step 3)

068 Iw $t0, 8($fp) # test (n = 0)

072 bnez $t0, power_rec

076 li $to, 1 # t0 <- 1

080 b power_end

C. Paulin (Université Paris-Saclay)

Compilers 194/209

Code for power

power_rec:
step 1
084 lw
088 sra
092 addi
096 swW
100 Iw
104 mul
108 addi
112 sw
116 jal
after the
120 addi

recursive call

$t0, 8($fp) # push argument (n>>1)
$to, $t0, 1

$sp, $sp, -4

$t0, 0($sp) # push argument (a=a)
$t0, 4($fp)

$t0, $t0, $tO

$sp, $sp, -4

$t0, 0($sp)

power # call

recursive call (STEP 5)

$sp, $sp, 8 # clean arguments

C. Paulin (Université Paris-Saclay)

Compilers 2025-26 195/209

Code for power

back to the body of power

124 sw $t0, -8($fp) # b <— power (axa) (n>>1)
128 Iw $t0, 8($fp) # test (n&&1 = 0)
132 andi $t0, $t0, Ox1
136 bnez $t0, power_odd
140 lw $t0, -8($fp) # 10 <- b
144 b power_end
power_odd:
148 Iw $t0, 4($fp)
152 lw $t1, -8($fp)
156 mul $t0, $t0, S$t1 # t0 <- axb
power_end:
end of call (STEP 4)
160 Iw $ra, 4($sp) # restore ra
164 Iw $fp, 8($sp) # restore fp
168 addi $sp, $sp, 12 # clean the stack

172 jr $ra # back to caller

C. Paulin (Université Paris-Saclay) Compilers 2025-26 196/209

Full code for the main function

call power 2 9

000 li $t0, 9 # prepare arguments

004 addi $sp, $sp, -4

008 sw $t0, 0($sp)

012 i $t0, 2

016 addi $sp, $sp, -4

020 sw $t0, 0($sp)

024 jal power # call

028 addi $sp, $sp, 8 # clean arguments
print result

032 move $a0, $t0

036 li $vo, 1 # code 1 : print integer

040 syscall
end

044 li $v0o, 10 # code 10 : stop

048 syscall

C. Paulin (Université Paris-Saclay) Compilers 2025-26 197/209

Stack frames

$sp $fp

4 { © ©4

[-JI20] e [256 [I[[-J120]6 [I6 [2 -[120 @ [4 4] -1028]
Il power (256, 1) | power (16, 2) [power (4, 4) | power

C. Paulin (Université Paris-Saclay) Compilers 198/209

Protocol MIPS with registers

@ we want to use registers for variables or intermediate values to improve
efficiency

@ the caller/callee protocol should agree on which registers can be used
freely and which one should be saved

@ 2 sorts of registers :
o callee saved : if the callee used them, it should save the old values and
restore them afterwards
registers $s* (saved) and $fp
o caller saved : the callee is free to use them, if the caller want to preserve
them, it should save them
registers $ax (arguments) st (temporary) and Sra

C. Paulin (Université Paris-Saclay) Compilers 2025-26 199/209

Example for power

@ use $a0 and $a1l for arguments and st 2 for the variable b
Main program

Call power 2 9

000’ li $at, 9 # préparation des arguments
012’ i $a0, 2
024 jal power # appel
Print
032’ move $a0, $vO
036 li $vo, 1
040 syscall
End
044 [i $vo, 10
048 syscall

C. Paulin (Université Paris-Saclay) Compilers 200/209

Example for power

Stack frame needs room to save sra, $fp, and (if needed) also $ao0, Sal,

power: # stack frame

052 addi $sp, $sp, -16 # 4 words reserved
056 sw $fp, 12($sp)
060 sw $ra, 8($sp)
064 addi $fp, $sp, 12
Execute the body of the function
072’ bnez $al, power_rec # test (n = 0)
076 li $vo, 1 # v0 <— 1
080 b power_end
power_rec: # recursive call
084’ sw $a0, -8(%$fp) # save a0 and af
084" sw $al, -12($fp)
088’ sra $at, $at, 1 # argument (n>>1)
104° mul $a0, $a0, $a0 # argument (a+a)
116 jal power # call
120’ Iw $a0, -8(%$fp) # restore a0 and al

120" lw $a1, -12($fp)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 201/209

Example for power

back to the body

124 move $t2, $vO
132° andi $t0, $atl, Ox1
136 bnez $t0, power_odd
140 move $v0, $t2
144 b power_end
power_odd:
156’ mul $v0, $t2, $a0
power_end:
clean stack frame
160 lw $ra, 8($sp)
164 Iw $fp, 12($sp)
168 addi $sp, $sp, 16
172 ir $ra

b <- power(axa) (n>>1)
test (n&&1 == 0)

v0 <- Db

v0 <-—a ~ b

C. Paulin (Université Paris-Saclay)

Compilers

2025-26 202/209

Simplification

@ Use directly sv0 instead of $t2 for local variable
@ Simplify branching at the end

132° andi $t0, $at1, Oxi # test (n&&1 = 0)

136’ beqz $t0, power_end

156’ mul $v0, $v0, $a0 # v0 <- axb
power_end:

C. Paulin (Université Paris-Saclay)

Compilers 203/209

Assembly code : MIPS

0 A target language : assembly code

@ Optimizing tail-recursive functions

C. Paulin (Université Paris-Saclay) Compilers 204/209

Optimizing tail-recursive functions

@ If an argument is not used after a call then it does not need to be saved
and restored

@ For instance nin the following function
let power a n =
if n =0 then 1
else if n & 1 = 0 then power (axa) (n>>1)
else a « (power (axa) (n>>1))

@ Change code such that when a recursive call is made, this is the last
instruction of the caller

@ The arguments will not need to be saved
@ No frame stack is needed

C. Paulin (Université Paris-Saclay) Compilers 2025-26 205/209

Tail-recursive functions/terminal call

let power a n = power_aux a n 1

let rec power_aux a n acc =
if n =0 then acc
else if n & 1 = 0 then power_aux (ara) (n>>1) acc

else power (axa) (n>>1) a=acc

in power 2 9

Terminal call let power a n = power_auxan 1
the value computed by power_aux a n 1 is the result of power a n and the
next instruction after power_aux is the return address of the call to power

@ no need to store $ra before calling power_aux, we do a simple jump
@ no use of the stack frame of power after the call

2025-26 206/209

C. Paulin (Université Paris-Saclay) Compilers

Power code

Main part as before

32
36

40
44
48
52

56
60
64

68
72

power :
li
j
power_aux:
beqz
andi
beqz
mul
power_even:
mul
sra
j
power_end:
move
jr

$a2, 1
power_aux

$al, power_end
$t0, a1, Ox1

$t0, power_even

$a2, $a0, $a2

$a0, $a0, $a0

$al, $at,
power_aux
$v0, $a2

$ra

1

initialise the accumulato
call power_aux a n 1

test (n = 0)

3

acc <— axacc

a’ <— a+a

n’ <— n>>1

return acc

C. Paulin (Université Paris-Saclay)

Compilers

2025-26 207/209

Terminal call

@ The code works only with registers
@ Code equivalent to the one of a loop

let power a n =
let acc = 1 in
while (n <> 0) do
if (n&&1 <> 0) then acc:= a-acc

a = a=a;
n = n>>i

done;

acc

}

@ Optimisation found in a language like ocaml which intensively uses
recursive functions

@ Also possible with high-level optimisations in gcc
@ Not done in languages like Python, Java. ..

C. Paulin (Université Paris-Saclay) Compilers 2025-26 208/209

@ A low-level programming languages (binary or assembly)
@ sequence of instructions (no control structures, just jump)
e computation between registers
@ explicit organisation of a linear memory (no data-structures, no variables)
e stack and heap
@ Schemes to translate high-level features

@ loops, conditionals, global variables, computation of expressions
e function call (communication protocol between caller/callee)

@ Optimize the generated code
@ using registers instead of the stack

C. Paulin (Université Paris-Saclay) Compilers 2025-26 209/209

	A target language : assembly code
	MIPS architecture and binary code
	Assemby language
	Functions and stack-frames
	Call convention
	Optimizing tail-recursive functions

