Programming Languages, semantics, compilers

Types and safety
C. Paulin (courtesy of T. Balabonski)
M1 MPRI 2025-26

0 Types and safety
Types values and operations

@ Typing judgment and inference rules
@ Type safety

@ Type verification for FUN

°

°

Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers

Where are we ?

Abstract syntax trees for the FUN language

type bop = Add | Sub | Mul | Lt | Eq
type expr =
| Int of int
| Bool of bool
| Bop of bop = expr = expr
| Var of string
| Let of string = expr = expr
| If of expr = expr = expr
| App of expr = expr
| Fun of string = expr
| Fix of string = expr

C. Paulin (Université Paris-Saclay) Compilers

Where are we ? Big step semantics

Specifies the
Two possible choices for values :

@ explicit : integers, booleans and closures

@ substitution : integer, booleans and abstractions (functions)
Rules

n —n

e — 'l € — No
e1dbe = n+ne

e = Vv elx =v] = v
let Xx

e in & = Vv

fun X —> € = fun X -> €

ey =— fun X —> € & — W ex =w] = v

61 6 — V

C. Paulin (Université Paris-Saclay)

Compilers

66/156

Where are we ? Small step semantics

Describes how the computation is done

el — € € — €5 nM4+nm=n
e1de — e de Vi e — vy @ e non—n
el — €

let X = € in & — let X = €| in &

let X = V in e— g[x = V]

er — € e — €
e e — €] e Vi € — Vi € (fun x -> €) v — e[x :=V]

C. Paulin (Université Paris-Saclay) Compilers

Our goal : MiniML

Design an interpreter (and then a compiler) for a more realistic functional
language (MiniML)

@ More operators on basic types
@ Pairs

@ Algebraic types and pattern-matching
Today :

@ type-checking (theory and practice)
@ implementation of type-checking and interpreter for MiniML

C. Paulin (Université Paris-Saclay)

Compilers

@ Another semantics of the FUN language

@ Classification of the various kinds of values a program may deal with
@ Make sure the program handles the data in a consistent way

@ Reject inconsistent programs (before execution if possible)

C. Paulin (Université Paris-Saclay) Compilers

Representation of data

@ Data stored as a sequence of bits
@ Example of a 32-bits memory word
1110 0000 0110 1100 0110 0111 0100 1000

Hexadecimal representation
(0—-9a=10=(1010)2 b=11 = (1011),
c=12=(1100),,...f =15 =(1111),
Ox e0 6c 67 48
@ The meaning of such a word depends on the context
@ memory address : 3 765 200 712,
@ a 32-bit signed integer in 2's complement : —529 766 584,
e a simple precision floating point number (IEEE754 standard) :

15 492 936 x 2%,
a character string in Latin-1 encoding : "Hola".

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Inconsistent operations

All operations in a programming language are constrained.
In caml for instance,

@ the addition 5 + 37 of two integers is possible,
@ but the operations "5" + 37,5 + (fun x —> 37) or 5(37) are not.
In our interpreter, we classified the possible values
type value =
| Vint of int
| VBool of bool
| VClos of string = expr = env

The interpreter checked consistency between values and operators

let rec eval e env = match e with
| Bop(op, el, e2) —>
begin match op, eval el env, eval e2 env with
| Add, VInt n1, VInt n2 —> VInt (n1 + n2)

| _ —> failwith "unauthorized_operation”
end

C. Paulin (Université Paris-Saclay)

Compilers 2025-26

Types : a classification of values

Programming languages usually distinguish numerous kinds of values, called

Basic types :
@ numbers : int, double,
@ booleans : bool,
@ characters : char,
@ character strings : string.
Richer types built over these base types.
@ arrays :int[],
@ functions : int —> bool,
@ data structures : struct point { int x; int y; };,
@ objects : class Point { public final int x, y; ... }.

Once this classification is set, each operation is defined to apply to elements
of some given type.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Overloading

: one operator may be applied to various types of elements, with
different meanings depending on the type.
For instance, in python or java the operator + may apply :

@ to two integers, in which case it denotes an addition : 5 + 37 = 42,

@ to two strings, in which case it denotes a concatenation :
ll5|l + l|37ll = |l537|l.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

: converting (implicitely or not) a value of some type to another type.
The operation "5" + 37 mixing a string and an integer may evaluate to :

@ 42 in php, where the string "5" is converted into the number 5,

@ "537"in java, where the integer 37 is converted into the string "37".
Note that such a conversion requires an actual modification of the data!

@ the number 37 is represented by 0x 00 00 00 25

@ the string "37" by 0x 00 00 37 33.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Summary on types

@ The type of a value gives the key for interpreting the associated data.
@ It may be required for selecting the appropriate operations.

@ Inconsistent types are likely to reveal programming errors (and programs
that should not be executed).

C. Paulin (Université Paris-Saclay) Compilers

Static versus dynamic type analysis

Handling types at runtime is costly in several ways :

@ some memory has to be used to pair each data with an identification of
its type,

@ runtime tests are necessary to select the operations to apply to the data,
@ execution may be interrupted when a type error appears, ...

In languages such as python, theses costs are paid in full.
Conversely, languages such as C, java or caml save us at
least a part of this runtime cost, since types are handled at compile time.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Static type analysis

° : type analysis is performed at compilation time

@ |t consists in associating with each expression in a program a type, which
predicts the type of the value that will be obtained when evaluating the
expression.

@ This prediction is based on constraints given by each constructor of the
abstract syntax.

C. Paulin (Université Paris-Saclay) Compilers

Static type analysis : examples

el ®e2
@ the expression will produce an integer,

@ for the operation to be consistent, both subexpressions e1 and e2 must
also produce integers.

let x=ein x +1

@ We associate to each variable the type of the value the variable refers to.

@ The type of x is the type of the value produced by the expression e,
we expect it to be the type of integers.

funx —>x + 1

@ the type of a function makes the expected types of all parameters explicit
as well as the type of the result

C. Paulin (Université Paris-Saclay)

Compilers 2025-26

Type safety

This verification of type consistency before the execution of a program is
associated to the idea, formulated by Robin Milner, that

Well-typed programs do not go wrong.

@ static type analysis : reject absurd programs before they are ever
executed (or released to clients...)

@ limits :
e type checking performed at compile time should be decidable (and
reasonably fast)

e identifying exactly buggy programs (like non-terminating ones) is usually
undecidable (or costly)

Compromise

@ give some , by rejecting many absurd programs,
@ and let to programmers enough

, by not rejecting too
many non-absurd programs.

C. Paulin (Université Paris-Saclay)

Compilers 2025-26

Type annotation

Type analysis may require some amount of annotations from the programmer.

@ Annotate each subexpression, the compiler just consistency.
fun (x : int) —
let (y : int) = ((x : int) + (1 : int) : int)
in (y : int)

@ Annotate only variables, and formal parameters of functions (C or Java).
The compiler deduces the type of each expression.

fun (x : int) —> let (y : int) = x+1 in y

@ Annotate only function parameters (sufficent for typechecking MiniML).
fun (x : int) —> let y = x+1 in y

© No annotation (Caml).
fun x —> let y = x+1 in y

In this last case, the compiler must the type of each variable and
expression, with no help from the programmer.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Advantage of static type-checking

@ selecting the appropriate operation for overloaded operators is done at
compilation time, and costs nothing at execution time.

@ checking the consistency of types at compilation time allow early
detection of many program inconsistencies, and consequently early
correction of bugs.

Next
@ formalize the notion of type and the associated constraints for FUN
@ implement type checking and type inference
o formally state and prove that well-typed programs does not go wrong

C. Paulin (Université Paris-Saclay) Compilers 2025-26

0 Types and safety

@ Typing judgment and inference rules

C. Paulin (Université Paris-Saclay) Compilers

Typing judgement

Well-typed programs are characterized by a set of rules that allow justififying
that “in some context I', an expression e is consistent and has type 7.
This sentence is called a , and is written

fr-e:r

The context I' in a typing judgment maps a type to each variable of the
expression e.

The typing judgment is not function but a relation between three elements :
context, expression, type.

@ some expressions e have no type (because they are inconsistent),

@ in some situations, several types might be possible for a given expression
and context.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Typing rules : consistency and types

Type of an expression for a fragment of the FUN language :

e
+ e

X ® 3

let X = e in e
fun X —> e
ee

We need a base type for numbers, as well as function types.

T = int
| 771

A type of the form 71 — 72 is the type of a function that expects a parameter of
type 71 and returns a result of type 7».

C. Paulin (Université Paris-Saclay) Compilers

Typing rules

We associate to each construction of the language a rule giving :
@ the type such expression may have, and

@ the constraints that have to be satisfied for the expression to be
consistent.

C. Paulin (Université Paris-Saclay) Compilers

Inference rules

@ An integer constant n has the type int.

[+ n: int

@ If both expressions e and e are consistent and of type int, then the
expression e; + ep is consistent, also with type int.

' e : int Nk e : int
[+ e + e : int

@ A variable has the type given by the environment.

mx € dom(N)

@ Alocal variable is associated to the type of the expression that defines it.
[+ e I T r,XIT1 [e I To
F let X = €1 in € : ™

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Inference rules : functions

@ In the body of a function, the formal parameter is seen as an ordinary
variable, whose type corresponds to the expected type of the parameter.

Mx:mmFe:m

Nl fun x —> € : ™ =
@ A function has to be applied to an argument of the expected type.

e m—m e :m
N+ e e : m

C. Paulin (Université Paris-Saclay) Compilers

Inference rules for simple types : summary

The for our fragment of the FUN language are fully defined by
the six following inference rules.

N e : int [F e : int

' n: int N~ e; + & : int
N e :n Mx:m F e m
r= x: rx) N+ let X = e in & : ™
Mx:mmFHe:m N e @ m—>m N e : m
Nl fun x —> € : ™ —> N ere :n

C. Paulin (Université Paris-Saclay) Compilers

Typable expressions

A typing judgment is justified by a series of deductions obtained by applying
the inference rules.

For instance, given the context ' = { x : int, f: int — int } we may reason
as follow.

@ I - x : int is valid, by the rule on variables.
@~ f: int — int is valid, by the rule on variables.
@ I+ 1 : int isvalid, by the rule on constants.

Q@ r + f 1 : int isvalid, by the rule on application, using the already
justified points 2. and 3.

@I+ x + f1: intisvalid, by the rule on addition, using 1. et 4.

This reasoning is called a , it can be represented as a
whose root is the conclusion we want to justify.

N+ f: int — int N+ 1: int
Nk x : int r=f1: int
- x+f1: int

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Multiple derivations

F fun x -> x : int — int
F fun x —> x : (int — int) — (int — int)

are both valid. Here, the absence of the context ' means that we consider the
empty context.

C. Paulin (Université Paris-Saclay) Compilers

Untypable expressions

@ We may need to prove that an expression has no type :
no judgment I = e : 7 can be justified using the typing rules

@ Show that any attempt at building a typing tree for the expression
necessarily fails

@ Inversion properties for the typing judgement

e Given the form of the judgement, the only rule(s) which applies is ... and the
the premisses hould also be derivable

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Untypable expressions : examples

(5 37),
@ only the application rule can lead to a judgmentl - 5 37 : 7,
@ thetwo premises - 5 : 7/ —w7andl + 37 : 7 should be derivable

@ no rule allows giving a functional type to an integer constant (the only rule
would give the typing judgment I - 5 : int).

fun x —> x x.

@ aderivation tree for a judgment ' - fun x -> x x : 7 would
necessarily have the shape

Nx:m Fx:m7—m Mx:m Fx:mn

MNx:m Fx x: 7

N fun x —> x x : T

@ thepremise I',x: 4 F x : 71 — 7 cannot be justified : the inference
rules allow only the type 71 for %, and there are no (finite) types 71 and m»
suchthat 1y = 74 — 7.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Reasoning on well-typed expressions

Prove that for any context I', any expression e and any type :
if T = e : 7isvalid then all the free variables of e are in the domain of I'.

@ By induction on the structure of the typing derivation tree.
@ We have one proof case for each inference rule,
@ each premise of the rule yields an induction hypothesis.

C. Paulin (Université Paris-Saclay) Compilers

Proof (1/2)

Property which dependson ', eand 7 : (I, e, 7) &f fv(e) C dom(T)

Proof by inductiononl - e : 7.
@ Casel + n : int. We have fv(n) = 0, and of course §) C dom(I').

@ Casel x : I'(x). We have fv(x) = { x }, and the application of the
rule indeed assumes x € dom(I").

@ Casel + e+ e : int, with premisesT + e; : int and
I - e : int. The premises give two induction hypotheses
fv(er) € dom(l) and fv(ez) C dom(I"). By definition of free variables we
have fv(ey + &) = fv(ey) U fv(ez). With the induction hypotheses we
deduce that fv(e;) Ufv(ex) C dom(T), and therefore fv(e; + e2) € dom(T).

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Proof (2/2)

@ Casel F let x = e in € : 7o, with premises + e; : 71 and
Ix:7m F e : 1. The premises give two induction hypotheses
fv(er) € dom(l) and fv(ez) € dom(I") U { x } (note that the premise
related to the judgment ', x : 74 + e> : 7 mentions an environment
extended with the variable x). By definition we have
fv(let x = e in &) =fv(er) U (fv(e2) \ { x}). The first induction
hypothesis ensures that fv(e;) C dom(I'). The second induction
hypothesis ensures that fv(e,) C dom(I") U { x }, from which we deduce
fv(ez) \ { x } € dom(T). Therefore we have
fv(let x = ey in &) C dom(I).

@ Both cases related to functions are similar to the cases above.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Full rules for FUN

New base type bool for boolean values : 7 ::= int | bool |7 — T
Three additional typing rules for the missing constructs.

@ An expression e; < e, has type bool whenever e; and e, are numbers.
F e : int NF e : int
' e < e : bool

@ A conditional requires the condition to be a boolean and the two branches
to have the same type

[+ ¢ : bool Fr-e : 7 N e : 7
'+ if cthenejelsee : T

@ A recursive expression must have the same type as the recursive
references it contains.
If the expression e has type 7, in an environment where the identifier x
also has this type 7, then the expression fix x = e is consistent of type 7.

Mx:.m+-e:r
N+ fixx=e : 1

C. Paulin (Université Paris-Saclay) Compilers 2025-26

0 Types and safety

@ Type safety

C. Paulin (Université Paris-Saclay) Compilers

Typing and big step semantics

Using the notion of natural semantics, we can prove the following statement
relating the typing and the evaluation of an expression.

If Te:7 and e = v then T F v : 7.

This means that the evaluation relation preserves the consistency and the
types of expressions.

@ However, we assume that the evaluation is indeed possible and reaches
a value.

@ It does not prove that the evaluation of well-typed programs indeed
produce a value

@ It says nothing about programs that break or loop.
@ We need the small step semantics to get an actual safety property.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Type safety, small step version

With a reduction semantics, the safety property may be state as : the

evaluation of a well-typed program never blocks on an inconsistent operation.
We formalize the property through two lemmas.

° lemma : a well-typed expression is never blocked.
If THe: r then e isavalueorthereis € suchthat e— €.
° lemma : reduction preserves types.

f THme:7 and e—¢€ then T F € : 1.
Historically, the type preservation lemma was called

C. Paulin (Université Paris-Saclay)

Compilers 2025-26

Consequence of progress and type preservation

Starting with a well-typed expression ey with type 7 :
@ if ey is not already a value, then it reduces to e, which is still well-typed
with type 7 and thus, in case it is not a value, reduces in turn to e;
well-typed of type 7, on so on.

(e1:7) = (e2:7) — (e3:7) —

@ At the far right side of this sequence, there are two possible scenarios :
o either we reach a value v (still well-typed with type 7),
@ or the reduction go on infinitely.
@ The reduction cannot end with a blocked expression.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Progress

IfIr - e : 7, then eis avalue, or there is € such that e — ¢'.
We consider the simple types for the fragment of the FUN language defined
by the following rules.

F e : int [F e : int
Fn: int N~ e + & : int

M- e : mn r,X27‘1F62:7'2

M= x: rx) N+ let x = e in & : ™
r,X:T1 F e : T2 r+ e I To—> T M+ € I To
' fun x > e : 1 > M- e e : n

C. Paulin (Université Paris-Saclay) Compilers 101/156

Proof of progress

We will prove the lemma by induction on the derivation of I + e : 7.
@ Casel F n : int. Then nis a value.
@ Casel + fun x -> e : 11 — 7. Then fun x —-> eis a value.
@ Casel - e1 e : mq,withl' - ey : m—=mandl F e : 7. Induction
hypotheses give us the two following disjunctions.

@ e isavalueor ey — €,
@ e isavalue or e — éb.
We reason by case on these disjunctions.
o If ey — €], then e; 2 — €] e, : goal completed.
@ Otherwise, ey is a value v;.
o Ife; — e), then vy ex — v4 €} : goal completed.
@ Otherwise, e; is a value v». Since we have as hypothesis the typing judgment
'+ vy : 7 — 71, we know that vy necessarily has the shape fun x -> e
(lemma detailed below). Then we have

e 6 = (fun X —> €) Vo — e[x :=]
which completes our case.
@ Other cases are similar.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 102/156

Classification lemma for typed values

Let v be avalue suchthatl’ = v : 7. Then:
@ if r = int, then v has the shape n,
@ if 7 =7 — 7, then v has the shape fun x —> e.

Proof by case on the last rule applied in the derivation of I' - v : 7, knowing
that the only two possible shapes for a value are : nor fun x —> e.

C. Paulin (Université Paris-Saclay) Compilers

103/156

Proof of type Preservation

If e — e thenforallr,ifT - e : 7thenlT + €& : 7.
Proof by induction on the derivation of e — ¢€'.
@ Caseny + no — nwith n=ny 4+ n.. The hypothesisI' - ny + no : 7
implies 7 = int ().
Moreover ' - n : int
@ Caseer + ex— €| + exwithey — €.
Induction hypothesis “if I = ey : 7/,thenT + &} : 7.
The hypothesis + e; + e, : TimpliesT=int,l + e; : int and
I+ e : int (inversion lemma).
Thus by induction hypothesis ' -+ €} : int and

I+ ¢e) : int N e : int
- e + e : int

2025-26 104/156

C. Paulin (Université Paris-Saclay) Compilers

Proof of type Preservation (continued)

@ Case (fun x in e) v — e[x:=nl.
FromT + (fun x -> e) v : 7 we know there is 7’ such that
N fun x -=> e : 7 —7andl F v : 7/ and from
I+ fun x —> e : 7" — 7 wefurtherdeduce ', x: 7 + e : 7
(inversion lemma).
Wehavel,x:7 F e : randT + v : 7/, from which we deduce
I+~ e[x:=v] : Tusinga lemma.

@ The other cases are similar.

C. Paulin (Université Paris-Saclay) Compilers

Inversion lemma

elflr'- e + e : 7thenT=int, T F € : intandl F & : int.
@ Ifl ey e : Tthenthereis 7/ suchthatl - e; : 7/ — 7 and
r- e : 7.
@ IflT v fun x —> e : tthenthereare s and m» suchthatr =7 — n
andl,x:m F e : 7.
Proof by case on the last rule of the typing derivation.

106/156

C. Paulin (Université Paris-Saclay) Compilers

Substitution lemma

Replacing a typed variable by an identically typed expression preserves
typing.

If I'x:7”"Fe:7 and T+ € :7 then T F ex:=¢€]: 7.

Proof by induction on the derivationof I x:7 F e : 7.

C. Paulin (Université Paris-Saclay) Compilers

107/156

Type safety theorem

The following theorem combines the progress lemma and the type
preservation lemme.

If THe:7 and e—*¢e with € notreducible, then € is a value.

The proof is by recurrence on the length of the reduction sequence e —* ¢'.

C. Paulin (Université Paris-Saclay)

Compilers

108/156

@ The safety property of typed expressions establishes a link between a
static property (type consistency) and a dynamic property (evaluation
without errors) of programs.

@ ltis still possible that a well-typed program fails to reach a value, in case
the evaluation never ends.

@ More generally, programming languages with a strict typing discipline are
able to detect many errors early (at compilation time), which results in
less errors at execution time.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 109/156

0 Types and safety

@ Type verification for FUN

C. Paulin (Université Paris-Saclay) Compilers

Writing a type-checker

@ We use caml to write a type checker from FUN programs with enough
annotations

@ We follow the typing rules given in the previous sections

@ This program consists in a function type_expr, which takes as parameters
an expression e and an environment I and which :
@ returns the unique type that can be associated to e in the environment I if e
is indeed consistent in this environment,
o fails otherwise.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 111/156

Data types for type-checking

(caml) datatype to represent the types of the FUN language :
type typ = | TIint | TBool | TFun of typ =« typ

Abstract syntax trees of the FUN language now include some type
annotations in functions and fixpoints.

type bop = Add | Sub | Mul | Lt | Eq

type expr =

| Fun of string = typ * expr
| Fix of string = typ =* expr

The environment is an association table between variable identifiers (string)
and FUN types.

module Env = Map.Make(String)
type type_env = typ Env.t

C. Paulin (Université Paris-Saclay) Compilers 2025-26 112/156

The type-checking function

let rec type_expr (e:expr) (env : type_env) : typ =
match e with

| Int _ —> TInt

| Var(x) -> Env.find x env

| Bop(Add, el, e2) —>
let t1 type_expr el env in
let t2 type_expr €2 env in
if t1 = TypInt & t2 = Typlnt then Typint
else failwith "type_error"”

| If(c, el, e2) —
let tc = type_expr ¢ env in
let t1 type_expr el env in
let t2 type_expr €2 env in
if tc = TBool & t1 = t2 then t1
else failwith "type_error"

C. Paulin (Université Paris-Saclay) Compilers 2025-26 113/156

The type-checking function

| Let(x, el, e2) —>
let t1 = type_expr el env in
type_expr e2 (Env.add x t1 env)
| Fun(x, tx, e) —>
let te = type_expr e (Env.add x tx env) in
TFun(tx, te)
| App(f, a) —
let tf = type_expr f env in
let ta = type_expr a env in
begin match tf with
| TFun(tx, te) —>
if tx = ta then te
else failwith "type_error"

| _ —> failwith "type_error"
end

C. Paulin (Université Paris-Saclay)

Compilers 2025-26 114/156

The type-checking function

| Fix(f, t, e) —>
let env’ = Env.add f t env in

let te = type_expr e env’ in
if te =t then t
else failwith "type_error"

C. Paulin (Université Paris-Saclay)

Compilers

0 Types and safety

@ Polymorphism

C. Paulin (Université Paris-Saclay) Compilers 116/156

Limit of simple types

With the simple types, an expression such as
fun x -> x

may have several distinct types (same code works for different sort of datas).
However, it can have only one type at a time.
In particular, in an expression such as

let £ = fun x —> x in f £

we have to choose only one type for the f, and the expression cannot be
typed.
This is called a (literally : one shape).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 117/156

Parametric polymorphism

@ The possibility of using parametrized types, which cover many variants of
a given shape of type.
@ We extend the grammar of the types = with two new elements :

e type , Or type , written «, £, ... denoting indeterminate
types,
@ a universal quantification Ya.7 denoting a type, where the type

variable « may, in 7, denote any type.

C. Paulin (Université Paris-Saclay) Compilers 118/156

Polymorphic types in FUN

The set of types is then defined by the extended grammar

T = int
| 7—71
|

|

o
Yo.r

119/156

Compilers

C. Paulin (Université Paris-Saclay)

Instantiation

If an expression e has a polymorphic type Va.7, then for any type 7/ we can
consider e to also be of type 7[a := 7]

N+ e: Var
re-e: rla:=71

The notion of type substitution 7[« := 7'] is defined by a set of equations.

int[a:=7] = int
a T ifa=p
Bla =71 = {5 if 0 £ 3
(1 =)a:=71 = nla:=71—- n[a:=171]

o V5.1 ifo =2
(V.r)la:=7] = { V3.7l = 7] if oo # g and 8 ¢ fv(7')

The notion of free type variable is also defined similarly.

fv(int) = 0
(o) = {a}
(T1 —>T2) = fV(T1)UfV(T2)
fv(Va.r) = fv(r)\{«a}

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Generalisation

When an expression has a type = containing a parameter «, and this
parameter is not constrained in any way by the context I' (does not appear in
I, then we can consider e as a polymorphic expression, with type Va.r.

r-e:r a & fv(l)
- e: Var

Formally, the set of free type variables of an environment
I={x1:71,...,%X: 7 } is defined by :

fv({x1:7,...., X 10 }) = U fv(r;)

1<i<n

C. Paulin (Université Paris-Saclay) Compilers 2025-26

121/156

Examples and counter-examples

We can now give to the identity function fun x —> x the polymorphic type
Ya.ao — «, stating that this function takes an argument of any type and returns

a result of the same type.

x:akF x: «

F fun x -> x : a =« a & fv(D)

F fun x —> x : Va.a = «

The key here is that fun x —> x can have the type o — « in the empty context,
and that the empty context, in particular, puts no constraint on «.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 122/156

It is then possible to type the expression let f = funx —> x in f f.
We type the expression f f, in an environment I = { f : Va.a — « } with which
we can complete the derivation as follows.

N £ : Vaa—a - £ : Vaa—a
I+ £ : (int — int) — (int — int) N+ £ : int — int
N+ £ £ : int — int

C. Paulin (Université Paris-Saclay)

Compilers

123/156

Other solution

Note that this is not the only solution :
@ we can replace the concrete type int by a type variable 3,
@ the resulting type could be generalized

N £ : Voaoa—a M+ £ : Voaoa—a«a
Fr-t:(B-=p0)—(B-5) r-f:8-=5
Fr- £ £:8—=0 B & fv(T)

Fr-f£ £:V8.6—p0

C. Paulin (Université Paris-Saclay) Compilers 124/156

Counter-example

@ This system however does not allow the type o — V.« for the identity
function fun x —> x.

@ Indeed, this would require giving to x the type VYa.« in a context
Nr={x:a}l

@ Our axiom rule only allows the derivation of I' - x : «,
« cannot be generalized, since it appears in I

@ Thus we (fortunately) cannot use polymorphic types to allow the
ill-formed expression (fun x —> x) 5 37.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Example : composition function

Let us show that composition function fun f —> fun g —> fun x —> g (f x) has
the polymorphic type Vagv.(a — 8) = (8 = v) = (@ = 7).

Write I the environment { £ : a« — 8,9 : 8 = v, x: a }.

We can build the following derivation :

r-f:a—p - x: «
r-g:pB—oxvy r-£f£x:p
e g (£ x) @ v
F fun £ -> fun g -=> fun x -> g (f x) : (a = B) = (B—=7) = (o« = 7) a, B, & fv(0)

b fun £ -> fun g -> fun x -> g (f x) : VafBy.(a = 8) = (B —=7v) = (o = 7)

Exercise : show that this composition function can also have the type
VYaf.(a = B) = Vv.(8 = v) = (e = 7).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 126/156

Undecidability of type-checking

Without annotations from the programmer, the two following questions about
polymorphic types in FUN are undecidable :

@ type inference : an expression e being given, determine whether there is
atype r suchthatl - e : 7 (and provide the type),

@ type verification : an expression e and a type 7 being given, determine
whether + e : 7.

These undecidability results still hold for any language extending the FUN
kernel.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 127/156

Restricting polymorphism

@ To check the type consistency of a program, or infer the type of a
program, we have to either require some amount of annotations or
restrict the use of polymorphism.

@ Each language sets is own balance between the amount of annotation
and the expressiveness of the type system.
@ In caml, polymorphism is restricted by a simple fact :

@ we cannot write any explicit quantifier in a type.

e every type variable that is globally free is implicitly considered to be
universally quantified.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 128/156

The caml type for the first projection of a pair
fst: 'a x 'b —> 'a

is actually the generalized type VaS5.a x 5 — a.
Similarly, the caml type for the left iterator of a list

List.fold left: ("a -—> 'b —> 'a) -> "a —> 'b list -> "a

has to be understood as Vaf.(a = 8 — a) > a — flist — a.

C. Paulin (Université Paris-Saclay) Compilers 129/156

Hindley-Milner system

@ This restricted polymorphism is common to all languages of the ML
family, and called the .

@ It only allows “prenex” quantification

@ |t distinguishes the notion of 7 without quantification, and the notion
o which is a type extended with global quantifiers.

C. Paulin (Université Paris-Saclay) Compilers

Hindley-Milner system for FUN

For our fragment of FUN, this can be described by the following grammar.

T = 1int
| 7—71
| «
o = Vaq...Va,T

In this system, we can work with type schemes such as Va.a — « and
Vafy.(a =) = (8 = v) = (o —), but we cannot express a type with the
shape (Va.a — o) — (Va.a — «).

In the Hindley-Milner system, we adapt contexts and typing judgments to
allow the association of a type scheme to a variable or an expression :

Xy:01,...,Xp:0pn - € : 0

Note that a type scheme with zero quantifier is just a type.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 131/156

Typing rules

Typing rules are also adapted in a way such that type schemes are authorized
only at some specific places.

N+ ey : int F e : int

' n: int N~ e; + & : int
M+ ey 04 r,X20'1 F e : oo
FI—x:I'(x) [F let X = € in & : 092
x:mmFe:m FFe . m—m e :m
- fun x —> € : 1 > 1 N e e :n
I+ e : Vao lr-e: o
———a ¢ fv(lN
N e: ola:=7] M- e: Vao

C. Paulin (Université Paris-Saclay) Compilers 132/156

Typing rules

The generalization of the type of an expression is only allowed at two places :
@ at the root of the program,
@ for the argument of a 1et definition.
@ the typing rule for 1et contains type schemes

@ the type of an application requires both the type of the function and the
type of its arguments to be simple types.

C. Paulin (Université Paris-Saclay) Compilers 133/156

The Hindley-Milner type system has two notable properties :
@ type checking and type inference are decidable (see next section),

@ the system ensures type safety : the evaluation of the well-typed program
cannot be stopped by an inconsistent operation (the proof extends the
one already given for simple types).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 134/156

0 Types and safety

@ Type inference

C. Paulin (Université Paris-Saclay) Compilers

Approach

Writing a type checker for simple types in FUN was relatively easy

@ typing rules were syntax-directed,
@ some type annotations were required at the few places where we did not
have a simple way of guessing the right type.

In the Hindley-Milner system

@ the two rules for instantiation and generalization may be applied to any
expression.

@ we aim at , Without any annotation.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 136/156

Syntax-directed Hindley-Milner system

We restrict the place where generalization and instantiation may be applied.
Type schemes appear only in the environment.

@ We allow the instantiation of a type variable only when recovering from
the environment the type scheme associated to a variable.
@ fetch the type scheme o associated to x in T,
@ instiantiate all universal variables of o
@ Symmetrically, we allow generalization only for 1et definitions.

@ type the expression ey in the environment I', and call 74 the obtained type,

@ generalize all the free variables of 1 that can possibly be generalized, to
obtain a type schema o7+,

@ type e in the extended environment where x is associated to o4.

This syntax-directed variant of the Hindley-Milner system is equivalent to the
original version.

C. Paulin (Université Paris-Saclay) Compilers 2025-26 137/156

M={x:a—=ay:atandl={f:Va.(a = a) = (a = a) }.

MEXx:a—>a MrEy:a«
MeEx:a>a MMEXxy: o

X:a—a,y:ak x(xy): «a

X:a—akl funy->x(xy): a—a
F funx->funy >x(xy) : (a > a)—= (a—a) (%)
F let f=funx->funy->x(xy)in f(funz->2z+1) : int — int

lo,z:int F z : int To,z:int F 1 : int
lo,z:int F z+1 : int

M, - f: (int — int) — (int — int) Mo F funz->Zz+1 : int — int

(%) f:Vo.(ao = a) » (o= a) - f(funz->2z+1) : int — int

C. Paulin (Université Paris-Saclay) Compilers 138/156

Constraint generation and unification

The algorithm W implements type inference :

@ Each time we need a type which cannot be computed directly, we

introduce instead a new type variable.
o type of the parameter of a function
@ types used for instantiating the universal variables of a type scheme I'(x).

@ The actual types represented by these type variables are computed later,
when checking/solving the constraints related to the typing rules (for
instance, for application or addition).

@ When a typing rule requires an identity between two types 71 and =
containing type variables a4, ..., an, we try to these two types, that is
we look for an instantiation f of the type variables «; such that f(r1) = f(72).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 139/156

Examples of unification

@ If 4 =a — int and 7» = (int — int) — 3, we can unify the types 7
and 7» using the instantiation [« — int — int, 8~ int].

@ If 4 =(a— int) —» (@ — int) and m» = § — 3, we can unify the types
71 and 7 using the instantiation [8 — a — int].

@ The types a — int and int cannot be unified.

@ The types o — int and « cannot be unified.

Unification criteria :

@ 7 is always unified with itself,

@ unification of 7y — 7{ with m» — 7} requires unifying 74 with 7> and 7{ with
5,

@ unification of 7 with a variable a, when o does not appears in 7, is done
by instantiating a by 7 (if « appears in 7, unification is not possible),

@ in any other case, unification is not possible.

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Algorithm W, example

Let us infer a type for the expression

let f=fun X -> fun y -> X(Xy) in f (fun z->z+1).

We first focus on fun x -> fun y -> x (x y),
@ The variable x is given the type «, where « is a new type variable.
@ Similarly, the variable y is given the type 8 with 8 a new type variable.
@ Then we type the expression x (x y).

e The application x y requires the type « of x to be a functional type, whose
parameter corresponds to the type 5 of y. Thus we unify « with g — ~, for v
some new type variable, and define a first element of instantiation :
a=L—n.

o Therefore, the application x y has the type ~.

e The application x (x y) requires the type a = 8 — ~ of x to be a functional
type, whose parameter corresponds to the type v of x y. Thus we unify
B — v with v — §, for 6 a new type variable. Then we get new instantiation
information : v = § = .

We also deduce that the application x (x y) has the type 5.

@ Finally, fun x —> fun y —> x (x y) get the type o — (8 —), which is
(8= B) = (8= B),

@ in the empty typing context this can be generalized as

vB.(8 =) = (B — B).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 141/156

Algorithm W, example (continued)

We typecheck f (fun z-> z+1), in a context where f : V5.(8 — 8) — (8 — B).
@ We fetch f: V5.(8 —) — (8 — B) from the context, and instantiate the
universal variable g with a new type variable (.
We get for f the type (¢ — ¢) — (¢ — ().
@ Typing of fun z -> z+1.
e The variable z is given the type n (new type variable).
o We type the addition z+1.
@ z has the type 7, that has to be unified with int. Son = int.
@ 1 has the type int, that has to be unified with int

Thus z+1 has the type int.
Thus fun z -> z+1 has the type n — int, which is int — int.

@ To type the application itself, we have to unify the type (¢ — ¢) — (¢ — ¢)
of f with the type (int — int) — 6 of a function that takes a parameter
of type int — int with a new type variable.

Thus we complete the instantiation with (= int and # = int — int.
Finally, f (fun z —> z+1) has the type § = int — int,

F letf=funx->funy->x(xy)inf(funz->2z+1) : int — int

C. Paulin (Université Paris-Saclay) Compilers 2025-26 142/156

Algorithm W, in caml

We take the raw abstract syntax of FUN, without type annotations.

type bop = Add | Sub | Mul | Lt | Eq
type expr =

| Int of int

| Bop of bop = expr = expr

| Var of string

| Let of string = expr = expr
| If of expr = expr = expr
| App of expr = expr
| Fun of string = expr
| Fix of string = expr

C. Paulin (Université Paris-Saclay) Compilers 143/156

Algorithm W, in caml

We extend simple types with a notion of type variable, and define a type
scheme as a pair of a simple type typ and a set vars of universally quantified
type variables.

type typ =
| TInt
| TBool
| TFun of typ « typ
| TVar of string

module VSet = Set.Make(String)
type schema = { vars: VSet.t; typ: typ }
let scheme_of typ t = { vars= VSet.empty; typ: t }

A typing environment associate a type scheme to each variable of the
program.

module SMap = Map.Make(String)
type env = schema SMap. t

C. Paulin (Université Paris-Saclay) Compilers 2025-26 144/156

Algorithm W, in caml

We build a function type_inference: expr —> typ that computes a type for the
expression given as parameter, trying to get a type that is as general as
possible.

This function uses an auxiliary function new_var: unit —> string for creating
new type variables.

let type_inference t =
let new var =
let cpt = ref 0 in
fun () —> incr cpt; Printf.sprintf "tvar_%i" !cpt
in

C. Paulin (Université Paris-Saclay) Compilers 2025-26

Representing substitutions

@ Type variables are associated to concrete types (or at least more precise
types) when new constraints are discovered and analyzed.

@ These associations are recorded in a hash table subst, that grows as the
inference proceeds.
let subst = Hashtbl.create 32 in

It allows sharing and avoid the cost of substitution

@ Thus, the types used during inference will contain type variables, some of
which will have a definition in subst.

@ To read such a type, we use auxiliary unfolding functions unfold and

unfold_full , which take a type 7 and replace its type variables by their
definition in subst (for those that have one).

C. Paulin (Université Paris-Saclay) Compilers 2025-26 146/156

Unfolding functions

@ unfold is a “shallow” replacement : it replaces only what is necessary to
distinguish between the cases Tint, TBool, TFun or TVar.

@ The function unfold_full performs a complete replacement

let rec unfold t = match t with
| TInt | TBool | TFun _ —> t
| TVar a —>
if Hashtbl.mem subst a then
unfold (Hashtbl.find subst a)
else
t
in

let rec unfold_full t = match unfold t with
| TFun(t1, t2) —> TFun(unfold_full t1, unfold_full t2)
| t —> t
in

C. Paulin (Université Paris-Saclay) Compilers 2025-26 147/156

Example using unfold

Check whether a type variable « appears in a type 7

let rec occur a t = match unfold t with
| TInt | TBool -> false
| TVar b —> a=b
| TFun(t1, t2) -> occur a t1 || occur a t2

C. Paulin (Université Paris-Saclay) Compilers 148/156

Core of the W algorithm

Consistency check is performed by an auxiliary function unify, which records
on the fly the new associations between type variables and concrete types.
Auxilliary functions :

@ instantiate : schema —> typ replaces each universal variable by a fresh
type variable.

@ generalize : typ —> env —> schema, returns a type scheme in which type
variables not free in the environment are generalized

@ unify : typ —>typ —> unit, try to unify its two arguments, adding the
constraints in the subst table, otherwise fails

C. Paulin (Université Paris-Saclay) Compilers 2025-26 149/156

Core of the W algorithm

let rec w e env = match e with

| Int _ —> TInt

| Bop((Add | Sub | Mul), el, e2) —
let t1 = w el env in
let t2 = w e2 env in
unify t1 TInt; unify t2 Tint;
TInt

| Bop(Lt, el, e2) —
let t1 = w el env in
let t2 = w e2 env in
unify t1 TInt; unify t2 Tint;
TBool

| Bop(Eq, el, e2) —>
let t1 = w el env in
let t2 = w e2 env in
unify t1 t2;
TBool

C. Paulin (Université Paris-Saclay) Compilers 2025-26 150/156

Core of the W algorithm (continued)

| If(c, el, e2) —>
let tc = w c env in
let t1 = w el env in
let t2 = w e2 env in
unify tc TBool;
unify t1 t2;
t1
| Var x —> instantiate (SMap.find x env)
| Let(x, el, e2) —>
let t1 = w el env in
let st1 = generalize t1 env in
let env’ = SMap.add x st1 env in
w e2 env’
| Fun(x, e) —>
let v = new_var() in
let env = SMap.add x (scheme_of_typ (TVar v)) env in
let t =we env in
TFun(TVar v, t)

C. Paulin (Université Paris-Saclay) Compilers 2025-26 151/156

Core of the W algorithm (continued)

| App(el, e2) —>
let t1 = w el env in
let t2 = w e2 env in
let v = TVar (new_var()) in
unify t1 (TFun(t2, v));
v
| Fix(f, e) —>
let v = new_var() in
let env = SMap.add f (scheme_of_typ (TVar v)) env in
let t = w e env in
unify t (TVar v);
t

C. Paulin (Université Paris-Saclay) Compilers 152/156

let rec unify t1 t2 = match unfold t1, unfold t2 with
| Tint, Tint - ()
| TBool, TBool —> ()
| TFun(t1, t1’), TFun(t2, t2°)
—> unify t1 t2; unify t1’ t2°’
| TVar a, TVar b when a=b -> ()
| TVar a, t | t, TVar a —>
if occur a t then
failwith "unification_error"
else
Hashtbl.add subst a t
| _, _ —> failwith "unification_error"

C. Paulin (Université Paris-Saclay) Compilers 153/156

Instantiation

let instantiate s =

let renaming = VSet.fold
(fun v r —> SMap.add v (TVar(new_var())) r)
s.vars SMap.empty

in

let rec rename t = match unfold t with

| TVar a as t —>
(try SMap.find a renaming with Not_found -> t)

| (TInt | TBool as t) —> t

| TFun(t1, t2) —-> TFun(rename t1, rename t2)

in rename s.typ

C. Paulin (Université Paris-Saclay) Compilers 2025-26 154/156

Generalization

let rec fvars t = match unfold t with
| Tint | TBool —> VSet.empty
| TFun(t1, t2) —> VSet.union (fvars t1) (fvars t2)
| TVar x -> VSet.singleton x
in
let rec schema_fvars s =
VSet. diff (fvars s.typ) s.vars
in
let generalize t env =
let fvt = fvars t in
let fvenv = SMap. fold
(fun _ s vs —> VSet.union (schema_fvars s) vs)
env
VSet. empty
in
{vars = VSet.diff fvt fvenv; typ=t}

C. Paulin (Université Paris-Saclay) Compilers 2025-26

@ A notion of simple types (base types + function types)
@ Typing environments, typing judgments

@ Inference rules caracterizing “well-typed” expressions (including
consistency)

@ Proof that well-typed expression can be evaluated “safely”
@ Algorithms for type-checking and type inference

C. Paulin (Université Paris-Saclay) Compilers 156/156

	Types and safety
	Types values and operations
	Typing judgment and inference rules
	Type safety
	Type verification for FUN
	Polymorphism
	Type inference

