
Programming Languages, semantics, compilers

Types and safety
C. Paulin (courtesy of T. Balabonski)

M1 MPRI 2025–26

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 64 / 156

Where are we?

Abstract syntax trees for the FUN language

type bop = Add | Sub | Mul | L t | Eq
type expr =

| I n t of i n t
| Bool of bool
| Bop of bop * expr * expr
| Var of s t r i n g
| Let of s t r i n g * expr * expr
| I f of expr * expr * expr
| App of expr * expr
| Fun of s t r i n g * expr
| F ix of s t r i n g * expr

C. Paulin (Université Paris-Saclay) Compilers 2025–26 65 / 156

Where are we? Big step semantics
Specifies the interpreter
Two possible choices for values :

1 explicit environments : integers, booleans and closures
2 substitution : integer, booleans and abstractions (functions)

Rules

n =⇒ n

e1 =⇒ n1 e2 =⇒ n2

e1 ⊕ e2 =⇒ n1 + n2

e1 =⇒ v1 e2[x := v1] =⇒ v
let x = e1 in e2 =⇒ v

fun x -> e =⇒ fun x -> e

e1 =⇒ fun x -> e e2 =⇒ v2 e[x := v2] =⇒ v
e1 e2 =⇒ v

C. Paulin (Université Paris-Saclay) Compilers 2025–26 66 / 156

Where are we? Small step semantics

Describes how the computation is done

e1 → e′
1

e1 ⊕ e2 → e′
1 ⊕ e2

e2 → e′
2

v1 ⊕ e2 → v1 ⊕ e′
2

n1 + n2 = n
n1 ⊕ n2 → n

e1 → e′
1

let x = e1 in e2 → let x = e′
1 in e2

let x = v in e → e[x := v]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v1 e2 → v1 e′
2 (fun x -> e) v → e[x := v]

C. Paulin (Université Paris-Saclay) Compilers 2025–26 67 / 156

Our goal : MiniML

Design an interpreter (and then a compiler) for a more realistic functional
language (MiniML)

More operators on basic types
Pairs
Algebraic types and pattern-matching

Today :
type-checking (theory and practice)
implementation of type-checking and interpreter for MiniML

C. Paulin (Université Paris-Saclay) Compilers 2025–26 68 / 156

Objectives

Another semantics of the FUN language
Classification of the various kinds of values a program may deal with
Make sure the program handles the data in a consistent way
Reject inconsistent programs (before execution if possible)

C. Paulin (Université Paris-Saclay) Compilers 2025–26 69 / 156

Representation of data

Data stored as a sequence of bits
Example of a 32-bits memory word
1110 0000 0110 1100 0110 0111 0100 1000

Hexadecimal representation
(0 − 9 a = 10 = (1010)2 b = 11 = (1011)2
c = 12 = (1100)2,. . .f = 15 = (1111)2

0x e0 6c 67 48

The meaning of such a word depends on the context
memory address : 3 765 200 712,
a 32-bit signed integer in 2’s complement : −529 766 584,
a simple precision floating point number (IEEE754 standard) :
15 492 936 × 242,
a character string in Latin-1 encoding : "Holà".

C. Paulin (Université Paris-Saclay) Compilers 2025–26 70 / 156

Inconsistent operations
All operations in a programming language are constrained.
In caml for instance,

the addition 5 + 37 of two integers is possible,
but the operations "5" + 37, 5 + (fun x −> 37) or 5(37) are not.

In our interpreter, we classified the possible values

type value =
| V In t of i n t
| VBool of bool
| VClos of s t r i n g * expr * env

The interpreter checked consistency between values and operators

l e t rec eval e env = match e with
| Bop (op , e1 , e2) −>

begin match op , eva l e1 env , eva l e2 env with
| Add , V In t n1 , V In t n2 −> VIn t (n1 + n2)
. . .
| _ −> f a i l w i t h " unauthor ized opera t ion "

end

C. Paulin (Université Paris-Saclay) Compilers 2025–26 71 / 156

Types : a classification of values

Programming languages usually distinguish numerous kinds of values, called
types.
Basic types :

numbers : int , double,
booleans : bool,
characters : char,
character strings : string .

Richer types built over these base types.
arrays : int [] ,
functions : int −> bool,
data structures : struct point { int x; int y; }; ,
objects : class Point { public final int x, y; ... }.

Once this classification is set, each operation is defined to apply to elements
of some given type.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 72 / 156

Overloading

overloading : one operator may be applied to various types of elements, with
different meanings depending on the type.
For instance, in python or java the operator + may apply :

to two integers, in which case it denotes an addition : 5 + 37 = 42,
to two strings, in which case it denotes a concatenation :
"5" + "37" = "537".

C. Paulin (Université Paris-Saclay) Compilers 2025–26 73 / 156

Casting

casting : converting (implicitely or not) a value of some type to another type.
The operation "5" + 37 mixing a string and an integer may evaluate to :

42 in php, where the string "5" is converted into the number 5,
"537" in java, where the integer 37 is converted into the string "37".

Note that such a conversion requires an actual modification of the data !
the number 37 is represented by 0x 00 00 00 25
the string "37" by 0x 00 00 37 33.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 74 / 156

Summary on types

The type of a value gives the key for interpreting the associated data.
It may be required for selecting the appropriate operations.
Inconsistent types are likely to reveal programming errors (and programs
that should not be executed).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 75 / 156

Static versus dynamic type analysis

Handling types at runtime is costly in several ways :
some memory has to be used to pair each data with an identification of
its type,
runtime tests are necessary to select the operations to apply to the data,
execution may be interrupted when a type error appears, ...

In dynamically typed languages such as python, theses costs are paid in full.
Conversely, statically typed languages such as C, java or caml save us at
least a part of this runtime cost, since types are handled at compile time.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 76 / 156

Static type analysis

Static type analysis : type analysis is performed at compilation time
It consists in associating with each expression in a program a type, which
predicts the type of the value that will be obtained when evaluating the
expression.
This prediction is based on constraints given by each constructor of the
abstract syntax.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 77 / 156

Static type analysis : examples

e1 ⊕ e2
the expression will produce an integer,
for the operation to be consistent, both subexpressions e1 and e2 must
also produce integers.

let x = e in x + 1
We associate to each variable the type of the value the variable refers to.
The type of x is the type of the value produced by the expression e,
we expect it to be the type of integers.

fun x −> x + 1
the type of a function makes the expected types of all parameters explicit
as well as the type of the result

C. Paulin (Université Paris-Saclay) Compilers 2025–26 78 / 156

Type safety

This verification of type consistency before the execution of a program is
associated to the idea, formulated by Robin Milner, that

Well-typed programs do not go wrong.

static type analysis : reject absurd programs before they are ever
executed (or released to clients...)
limits :

type checking performed at compile time should be decidable (and
reasonably fast)
identifying exactly buggy programs (like non-terminating ones) is usually
undecidable (or costly)

Compromise
give some safety, by rejecting many absurd programs,
and let to programmers enough expressiveness, by not rejecting too
many non-absurd programs.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 79 / 156

Type annotation
Type analysis may require some amount of annotations from the programmer.

1 Annotate each subexpression, the compiler just checks consistency.

fun (x : i n t) −>
l e t (y : i n t) = ((x : i n t) + (1 : i n t) : i n t)
in (y : i n t)

2 Annotate only variables, and formal parameters of functions (C or Java).
The compiler deduces the type of each expression.

fun (x : i n t) −> l e t (y : i n t) = x+1 in y

3 Annotate only function parameters (sufficent for typechecking MiniML).

fun (x : i n t) −> l e t y = x+1 in y

4 No annotation (Caml).

fun x −> l e t y = x+1 in y

In this last case, the compiler must infer the type of each variable and
expression, with no help from the programmer.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 80 / 156

Advantage of static type-checking

selecting the appropriate operation for overloaded operators is done at
compilation time, and costs nothing at execution time.
checking the consistency of types at compilation time allow early
detection of many program inconsistencies, and consequently early
correction of bugs.

Next
formalize the notion of type and the associated constraints for FUN
implement type checking and type inference
formally state and prove that well-typed programs does not go wrong

C. Paulin (Université Paris-Saclay) Compilers 2025–26 81 / 156

Types

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 82 / 156

Typing judgement

Well-typed programs are characterized by a set of rules that allow justififying
that “in some context Γ, an expression e is consistent and has type τ ”.
This sentence is called a typing judgment, and is written

Γ ⊢ e : τ

The context Γ in a typing judgment maps a type to each variable of the
expression e.
The typing judgment is not function but a relation between three elements :
context, expression, type.

some expressions e have no type (because they are inconsistent),
in some situations, several types might be possible for a given expression
and context.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 83 / 156

Typing rules : consistency and types

Type of an expression for a fragment of the FUN language :

e ::= n
| e + e
| x
| let x = e in e
| fun x -> e
| e e

We need a base type for numbers, as well as function types.

τ ::= int
| τ → τ

A type of the form τ1 → τ2 is the type of a function that expects a parameter of
type τ1 and returns a result of type τ2.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 84 / 156

Typing rules

We associate to each construction of the language a rule giving :
the type such expression may have, and
the constraints that have to be satisfied for the expression to be
consistent.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 85 / 156

Inference rules
An integer constant n has the type int .

Γ ⊢ n : int

If both expressions e1 and e2 are consistent and of type int , then the
expression e1 + e2 is consistent, also with type int .

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

A variable has the type given by the environment.

Γ ⊢ x : Γ(x)
x ∈ dom(Γ)

A local variable is associated to the type of the expression that defines it.

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

C. Paulin (Université Paris-Saclay) Compilers 2025–26 86 / 156

Inference rules : functions

In the body of a function, the formal parameter is seen as an ordinary
variable, whose type corresponds to the expected type of the parameter.

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x -> e : τ1 → τ2

A function has to be applied to an argument of the expected type.

Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

C. Paulin (Université Paris-Saclay) Compilers 2025–26 87 / 156

Inference rules for simple types : summary

The simple types for our fragment of the FUN language are fully defined by
the six following inference rules.

Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ x : Γ(x)
Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x -> e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

C. Paulin (Université Paris-Saclay) Compilers 2025–26 88 / 156

Typable expressions

A typing judgment is justified by a series of deductions obtained by applying
the inference rules.
For instance, given the context Γ = { x : int, f : int → int } we may reason
as follow.

1 Γ ⊢ x : int is valid, by the rule on variables.
2 Γ ⊢ f : int → int is valid, by the rule on variables.
3 Γ ⊢ 1 : int is valid, by the rule on constants.
4 Γ ⊢ f 1 : int is valid, by the rule on application, using the already

justified points 2. and 3.
5 Γ ⊢ x + f 1 : int is valid, by the rule on addition, using 1. et 4.

This reasoning is called a derivation, it can be represented as a derivation
tree whose root is the conclusion we want to justify.

Γ ⊢ x : int

Γ ⊢ f : int → int Γ ⊢ 1 : int

Γ ⊢ f 1 : int

Γ ⊢ x + f 1 : int

C. Paulin (Université Paris-Saclay) Compilers 2025–26 89 / 156

Multiple derivations

⊢ fun x -> x : int → int

⊢ fun x -> x : (int → int) → (int → int)

are both valid. Here, the absence of the context Γ means that we consider the
empty context.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 90 / 156

Untypable expressions

We may need to prove that an expression has no type :
no judgment Γ ⊢ e : τ can be justified using the typing rules
Show that any attempt at building a typing tree for the expression
necessarily fails
Inversion properties for the typing judgement

Given the form of the judgement, the only rule(s) which applies is ... and the
the premisses hould also be derivable

C. Paulin (Université Paris-Saclay) Compilers 2025–26 91 / 156

Untypable expressions : examples

(5 37),
only the application rule can lead to a judgment Γ ⊢ 5 37 : τ ,
the two premises Γ ⊢ 5 : τ ′ → τ and Γ ⊢ 37 : τ ′ should be derivable
no rule allows giving a functional type to an integer constant (the only rule
would give the typing judgment Γ ⊢ 5 : int).

fun x −> x x.
a derivation tree for a judgment Γ ⊢ fun x -> x x : τ would
necessarily have the shape

Γ,x : τ1 ⊢ x : τ1 → τ2 Γ,x : τ1 ⊢ x : τ1

Γ,x : τ1 ⊢ x x : τ2

Γ ⊢ fun x -> x x : τ2

the premise Γ,x : τ1 ⊢ x : τ1 → τ2 cannot be justified : the inference
rules allow only the type τ1 for x, and there are no (finite) types τ1 and τ2
such that τ1 = τ1 → τ2.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 92 / 156

Reasoning on well-typed expressions

Prove that for any context Γ, any expression e and any type τ :
if Γ ⊢ e : τ is valid then all the free variables of e are in the domain of Γ.

By induction on the structure of the typing derivation tree.
We have one proof case for each inference rule,
each premise of the rule yields an induction hypothesis.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 93 / 156

Proof (1/2)

Property which depends on Γ, e and τ : ¶(Γ,e, τ) def
= fv(e) ⊆ dom(Γ)

Proof by induction on Γ ⊢ e : τ .
Case Γ ⊢ n : int. We have fv(n) = ∅, and of course ∅ ⊆ dom(Γ).
Case Γ ⊢ x : Γ(x). We have fv(x) = { x }, and the application of the
rule indeed assumes x ∈ dom(Γ).
Case Γ ⊢ e1 + e2 : int, with premises Γ ⊢ e1 : int and
Γ ⊢ e2 : int. The premises give two induction hypotheses
fv(e1) ⊆ dom(Γ) and fv(e2) ⊆ dom(Γ). By definition of free variables we
have fv(e1 + e2) = fv(e1) ∪ fv(e2). With the induction hypotheses we
deduce that fv(e1)∪ fv(e2) ⊆ dom(Γ), and therefore fv(e1 + e2) ⊆ dom(Γ).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 94 / 156

Proof (2/2)

Case Γ ⊢ let x = e1 in e2 : τ2, with premises Γ ⊢ e1 : τ1 and
Γ, x : τ1 ⊢ e2 : τ2. The premises give two induction hypotheses
fv(e1) ⊆ dom(Γ) and fv(e2) ⊆ dom(Γ) ∪ { x } (note that the premise
related to the judgment Γ, x : τ1 ⊢ e2 : τ2 mentions an environment
extended with the variable x). By definition we have
fv(let x = e1 in e2) = fv(e1) ∪ (fv(e2) \ { x }). The first induction
hypothesis ensures that fv(e1) ⊆ dom(Γ). The second induction
hypothesis ensures that fv(e2) ⊆ dom(Γ) ∪ { x }, from which we deduce
fv(e2) \ { x } ⊆ dom(Γ). Therefore we have
fv(let x = e1 in e2) ⊆ dom(Γ).
Both cases related to functions are similar to the cases above.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 95 / 156

Full rules for FUN
New base type bool for boolean values : τ ::= int | bool | τ → τ
Three additional typing rules for the missing constructs.

An expression e1 < e2 has type bool whenever e1 and e2 are numbers.

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 < e2 : bool

A conditional requires the condition to be a boolean and the two branches
to have the same type

Γ ⊢ c : bool Γ ⊢ e1 : τ Γ ⊢ e2 : τ

Γ ⊢ if c then e1 else e2 : τ

A recursive expression must have the same type τ as the recursive
references it contains.
If the expression e has type τ , in an environment where the identifier x
also has this type τ , then the expression fix x = e is consistent of type τ .

Γ, x : τ ⊢ e : τ

Γ ⊢ fix x = e : τ

C. Paulin (Université Paris-Saclay) Compilers 2025–26 96 / 156

Types

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 97 / 156

Typing and big step semantics

Using the notion of natural semantics, we can prove the following statement
relating the typing and the evaluation of an expression.

If Γ ⊢ e : τ and e =⇒ v then Γ ⊢ v : τ .

This means that the evaluation relation preserves the consistency and the
types of expressions.

However, we assume that the evaluation is indeed possible and reaches
a value.
It does not prove that the evaluation of well-typed programs indeed
produce a value
It says nothing about programs that break or loop.
We need the small step semantics to get an actual safety property.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 98 / 156

Type safety, small step version

With a reduction semantics, the safety property may be state as : the
evaluation of a well-typed program never blocks on an inconsistent operation.
We formalize the property through two lemmas.

Progress lemma : a well-typed expression is never blocked.
If Γ ⊢ e : τ then e is a value or there is e′ such that e → e′.

Type preservation lemma : reduction preserves types.
If Γ ⊢ e : τ and e → e′ then Γ ⊢ e′ : τ .

Historically, the type preservation lemma was called subject reduction

C. Paulin (Université Paris-Saclay) Compilers 2025–26 99 / 156

Consequence of progress and type preservation

Starting with a well-typed expression e1 with type τ :
if e1 is not already a value, then it reduces to e2, which is still well-typed
with type τ and thus, in case it is not a value, reduces in turn to e3
well-typed of type τ , on so on.

(e1 : τ) → (e2 : τ) → (e3 : τ) → . . .

At the far right side of this sequence, there are two possible scenarios :
either we reach a value v (still well-typed with type τ),
or the reduction go on infinitely.
The reduction cannot end with a blocked expression.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 100 / 156

Progress

If Γ ⊢ e : τ , then e is a value, or there is e′ such that e → e′.
We consider the simple types for the fragment of the FUN language defined
by the following rules.

Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ x : Γ(x)
Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2

Γ ⊢ let x = e1 in e2 : τ2

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x -> e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

C. Paulin (Université Paris-Saclay) Compilers 2025–26 101 / 156

Proof of progress

We will prove the lemma by induction on the derivation of Γ ⊢ e : τ .
Case Γ ⊢ n : int. Then n is a value.
Case Γ ⊢ fun x -> e : τ1 → τ2. Then fun x -> e is a value.
Case Γ ⊢ e1 e2 : τ1, with Γ ⊢ e1 : τ2 → τ1 and Γ ⊢ e2 : τ2. Induction
hypotheses give us the two following disjunctions.

1 e1 is a value or e1 → e′
1,

2 e2 is a value or e2 → e′
2.

We reason by case on these disjunctions.
If e1 → e′

1, then e1 e2 → e′
1 e2 : goal completed.

Otherwise, e1 is a value v1.
If e2 → e′

2, then v1 e2 → v1 e′
2 : goal completed.

Otherwise, e2 is a value v2. Since we have as hypothesis the typing judgment
Γ ⊢ v1 : τ2 → τ1, we know that v1 necessarily has the shape fun x -> e
(classification lemma detailed below). Then we have

e1 e2 = (fun x -> e) v2 → e[x := v2]

which completes our case.

Other cases are similar.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 102 / 156

Classification lemma for typed values

Let v be a value such that Γ ⊢ v : τ . Then :
if τ = int, then v has the shape n,
if τ = τ1 → τ2, then v has the shape fun x -> e.

Proof by case on the last rule applied in the derivation of Γ ⊢ v : τ , knowing
that the only two possible shapes for a value are : n or fun x -> e.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 103 / 156

Proof of type Preservation

If e → e′ then for all τ , if Γ ⊢ e : τ then Γ ⊢ e′ : τ .
Proof by induction on the derivation of e → e′.

Case n1 + n2 → n with n = n1 + n2. The hypothesis Γ ⊢ n1 + n2 : τ
implies τ = int (inversion).
Moreover Γ ⊢ n : int

Case e1 + e2 → e′
1 + e2 with e1 → e′

1.
Induction hypothesis “if Γ ⊢ e1 : τ ′, then Γ ⊢ e′

1 : τ ′”.
The hypothesis Γ ⊢ e1 + e2 : τ implies τ = int, Γ ⊢ e1 : int and
Γ ⊢ e2 : int (inversion lemma).
Thus by induction hypothesis Γ ⊢ e′

1 : int and

Γ ⊢ e′
1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

C. Paulin (Université Paris-Saclay) Compilers 2025–26 104 / 156

Proof of type Preservation (continued)

Case (fun x in e) v → e[x := n].
From Γ ⊢ (fun x -> e) v : τ we know there is τ ′ such that
Γ ⊢ fun x -> e : τ ′ → τ and Γ ⊢ v : τ ′ and from
Γ ⊢ fun x -> e : τ ′ → τ we further deduce Γ, x : τ ′ ⊢ e : τ
(inversion lemma).
We have Γ, x : τ ′ ⊢ e : τ and Γ ⊢ v : τ ′, from which we deduce
Γ ⊢ e[x := v] : τ using a substitution lemma.
The other cases are similar.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 105 / 156

Inversion lemma

If Γ ⊢ e1 + e2 : τ then τ = int, Γ ⊢ e1 : int and Γ ⊢ e2 : int.
If Γ ⊢ e1 e2 : τ then there is τ ′ such that Γ ⊢ e1 : τ ′ → τ and
Γ ⊢ e2 : τ ′.
If Γ ⊢ fun x -> e : τ then there are τ1 and τ2 such that τ = τ1 → τ2
and Γ, x : τ1 ⊢ e : τ2.

Proof by case on the last rule of the typing derivation.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 106 / 156

Substitution lemma

Replacing a typed variable by an identically typed expression preserves
typing.

If Γ, x : τ ′ ⊢ e : τ and Γ ⊢ e′ : τ ′ then Γ ⊢ e[x := e′] : τ .

Proof by induction on the derivation of Γ, x : τ ′ ⊢ e : τ .

C. Paulin (Université Paris-Saclay) Compilers 2025–26 107 / 156

Type safety theorem

The following theorem combines the progress lemma and the type
preservation lemme.

If Γ ⊢ e : τ and e →∗ e′ with e′ not reducible, then e′ is a value.

The proof is by recurrence on the length of the reduction sequence e →∗ e′.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 108 / 156

Summary

The safety property of typed expressions establishes a link between a
static property (type consistency) and a dynamic property (evaluation
without errors) of programs.
It is still possible that a well-typed program fails to reach a value, in case
the evaluation never ends.
More generally, programming languages with a strict typing discipline are
able to detect many errors early (at compilation time), which results in
less errors at execution time.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 109 / 156

Types

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 110 / 156

Writing a type-checker

We use caml to write a type checker from FUN programs with enough
annotations
We follow the typing rules given in the previous sections
This program consists in a function type_expr, which takes as parameters
an expression e and an environment Γ and which :

returns the unique type that can be associated to e in the environment Γ if e
is indeed consistent in this environment,
fails otherwise.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 111 / 156

Data types for type-checking

(caml) datatype to represent the types of the FUN language :

type t yp = | T In t | TBool | TFun of t yp * typ

Abstract syntax trees of the FUN language now include some type
annotations in functions and fixpoints.

type bop = Add | Sub | Mul | L t | Eq
type expr =

. . .
| Fun of s t r i n g * typ * expr
| F ix of s t r i n g * typ * expr

The environment is an association table between variable identifiers (string)
and FUN types.

module Env = Map. Make(S t r i n g)
type type_env = typ Env . t

C. Paulin (Université Paris-Saclay) Compilers 2025–26 112 / 156

The type-checking function

l e t rec type_expr (e : expr) (env : type_env) : typ =
match e with

| I n t _ −> T In t
| Var (x) −> Env . f i n d x env
| Bop (Add , e1 , e2) −>

l e t t1 = type_expr e1 env in
l e t t2 = type_expr e2 env in
i f t1 = TypIn t && t2 = TypIn t then TypIn t
else f a i l w i t h " type e r r o r "

| I f (c , e1 , e2) −>
l e t t c = type_expr c env in
l e t t1 = type_expr e1 env in
l e t t2 = type_expr e2 env in
i f t c = TBool && t1 = t2 then t1
else f a i l w i t h " type e r r o r "

C. Paulin (Université Paris-Saclay) Compilers 2025–26 113 / 156

The type-checking function

| Let (x , e1 , e2) −>
l e t t1 = type_expr e1 env in
type_expr e2 (Env . add x t1 env)

| Fun (x , tx , e) −>
l e t te = type_expr e (Env . add x t x env) in
TFun (tx , te)

| App (f , a) −>
l e t t f = type_expr f env in
l e t ta = type_expr a env in
begin match t f with

| TFun (tx , te) −>
i f t x = ta then te
else f a i l w i t h " type e r r o r "

| _ −> f a i l w i t h " type e r r o r "
end

C. Paulin (Université Paris-Saclay) Compilers 2025–26 114 / 156

The type-checking function

| F ix (f , t , e) −>
l e t env ’ = Env . add f t env in
l e t te = type_expr e env ’ in
i f te = t then t
else f a i l w i t h " type e r r o r "

C. Paulin (Université Paris-Saclay) Compilers 2025–26 115 / 156

Types

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 116 / 156

Limit of simple types

With the simple types, an expression such as

fun x -> x

may have several distinct types (same code works for different sort of datas).
However, it can have only one type at a time.
In particular, in an expression such as

let f = fun x -> x in f f

we have to choose only one type for the f, and the expression cannot be
typed.
This is called a monomorphic type (literally : one shape).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 117 / 156

Parametric polymorphism

The possibility of using parametrized types, which cover many variants of
a given shape of type.
We extend the grammar of the types τ with two new elements :

type variables, or type parameters, written α, β, ... denoting indeterminate
types,
a universal quantification ∀α.τ denoting a polymorphic type, where the type
variable α may, in τ , denote any type.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 118 / 156

Polymorphic types in FUN

The set of types is then defined by the extended grammar

τ ::= int
| τ → τ
| α
| ∀α.τ

C. Paulin (Université Paris-Saclay) Compilers 2025–26 119 / 156

Instantiation
If an expression e has a polymorphic type ∀α.τ , then for any type τ ′ we can
consider e to also be of type τ [α := τ ′]

Γ ⊢ e : ∀α.τ
Γ ⊢ e : τ [α := τ ′]

The notion of type substitution τ [α := τ ′] is defined by a set of equations.

int[α := τ ′] = int

β[α := τ ′] =

{
τ ′ if α = β
β if α ̸= β

(τ1 → τ2)[α := τ ′] = τ1[α := τ ′] → τ2[α := τ ′]

(∀β.τ)[α := τ ′] =

{
∀β.τ if α = β
∀β.τ [α := τ ′] if α ̸= β and β ̸∈ fv(τ ′)

The notion of free type variable is also defined similarly.

fv(int) = ∅
fv(α) = {α }

fv(τ1 → τ2) = fv(τ1) ∪ fv(τ2)
fv(∀α.τ) = fv(τ) \ {α }

C. Paulin (Université Paris-Saclay) Compilers 2025–26 120 / 156

Generalisation

When an expression has a type τ containing a parameter α, and this
parameter is not constrained in any way by the context Γ (does not appear in
Γ), then we can consider e as a polymorphic expression, with type ∀α.τ .

Γ ⊢ e : τ α ̸∈ fv(Γ)
Γ ⊢ e : ∀α.τ

Formally, the set of free type variables of an environment
Γ = { x1 : τ1, . . . , xn : τn } is defined by :

fv({ x1 : τ1, . . . , xn : τn }) =
⋃

1≤i≤n

fv(τi)

C. Paulin (Université Paris-Saclay) Compilers 2025–26 121 / 156

Examples and counter-examples

We can now give to the identity function fun x −> x the polymorphic type
∀α.α → α, stating that this function takes an argument of any type and returns
a result of the same type.

x : α ⊢ x : α

⊢ fun x -> x : α → α α ̸∈ fv(∅)
⊢ fun x -> x : ∀α.α → α

The key here is that fun x −> x can have the type α → α in the empty context,
and that the empty context, in particular, puts no constraint on α.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 122 / 156

Example

It is then possible to type the expression let f = fun x −> x in f f .
We type the expression f f, in an environment Γ = { f : ∀α.α → α } with which
we can complete the derivation as follows.

Γ ⊢ f : ∀α.α → α

Γ ⊢ f : (int → int) → (int → int)

Γ ⊢ f : ∀α.α → α

Γ ⊢ f : int → int

Γ ⊢ f f : int → int

C. Paulin (Université Paris-Saclay) Compilers 2025–26 123 / 156

Other solution

Note that this is not the only solution :
we can replace the concrete type int by a type variable β,
the resulting type could be generalized

Γ ⊢ f : ∀α.α → α

Γ ⊢ f : (β → β) → (β → β)

Γ ⊢ f : ∀α.α → α

Γ ⊢ f : β → β

Γ ⊢ f f : β → β β ̸∈ fv(Γ)
Γ ⊢ f f : ∀β.β → β

C. Paulin (Université Paris-Saclay) Compilers 2025–26 124 / 156

Counter-example

This system however does not allow the type α → ∀α.α for the identity
function fun x −> x.
Indeed, this would require giving to x the type ∀α.α in a context
Γ = {x : α }.
Our axiom rule only allows the derivation of Γ ⊢ x : α,
α cannot be generalized, since it appears in Γ.
Thus we (fortunately) cannot use polymorphic types to allow the
ill-formed expression (fun x −> x) 5 37.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 125 / 156

Example : composition function

Let us show that composition function fun f −> fun g −> fun x −> g (f x) has
the polymorphic type ∀αβγ.(α → β) → (β → γ) → (α → γ).
Write Γ the environment {f : α → β,g : β → γ,x : α }.
We can build the following derivation :

Γ ⊢ g : β → γ

Γ ⊢ f : α → β Γ ⊢ x : α

Γ ⊢ f x : β

Γ ⊢ g (f x) : γ

⊢ fun f -> fun g -> fun x -> g (f x) : (α → β) → (β → γ) → (α → γ) α, β, γ ̸∈ fv(∅)
⊢ fun f -> fun g -> fun x -> g (f x) : ∀αβγ.(α → β) → (β → γ) → (α → γ)

Exercise : show that this composition function can also have the type
∀αβ.(α → β) → ∀γ.(β → γ) → (α → γ).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 126 / 156

Undecidability of type-checking

Without annotations from the programmer, the two following questions about
polymorphic types in FUN are undecidable :

type inference : an expression e being given, determine whether there is
a type τ such that Γ ⊢ e : τ (and provide the type),
type verification : an expression e and a type τ being given, determine
whether Γ ⊢ e : τ .

These undecidability results still hold for any language extending the FUN
kernel.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 127 / 156

Restricting polymorphism

To check the type consistency of a program, or infer the type of a
program, we have to either require some amount of annotations or
restrict the use of polymorphism.
Each language sets is own balance between the amount of annotation
and the expressiveness of the type system.
In caml, polymorphism is restricted by a simple fact :

we cannot write any explicit quantifier in a type.
every type variable that is globally free is implicitly considered to be
universally quantified.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 128 / 156

Example

The caml type for the first projection of a pair

fst: ’a * ’b -> ’a

is actually the generalized type ∀αβ.α× β → α.
Similarly, the caml type for the left iterator of a list

List.fold_left: (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

has to be understood as ∀αβ.(α → β → α) → α → β list → α.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 129 / 156

Hindley-Milner system

This restricted polymorphism is common to all languages of the ML
family, and called the Hindley-Milner system.
It only allows “prenex” quantification
It distinguishes the notion of type τ without quantification, and the notion
type scheme σ which is a type extended with global quantifiers.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 130 / 156

Hindley-Milner system for FUN

For our fragment of FUN, this can be described by the following grammar.

τ ::= int
| τ → τ
| α

σ ::= ∀α1 . . . ∀αn.τ

In this system, we can work with type schemes such as ∀α.α → α and
∀αβγ.(α → β) → (β → γ) → (α → γ), but we cannot express a type with the
shape (∀α.α → α) → (∀α.α → α).
In the Hindley-Milner system, we adapt contexts and typing judgments to
allow the association of a type scheme to a variable or an expression :

x1 : σ1, . . . , xn : σn ⊢ e : σ

Note that a type scheme with zero quantifier is just a type.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 131 / 156

Typing rules

Typing rules are also adapted in a way such that type schemes are authorized
only at some specific places.

Γ ⊢ n : int

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Γ ⊢ x : Γ(x)
Γ ⊢ e1 : σ1 Γ, x : σ1 ⊢ e2 : σ2

Γ ⊢ let x = e1 in e2 : σ2

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ fun x -> e : τ1 → τ2

Γ ⊢ e1 : τ2 → τ1 Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ1

Γ ⊢ e : ∀α.σ
Γ ⊢ e : σ[α := τ]

Γ ⊢ e : σ

Γ ⊢ e : ∀α.σ
α ̸∈ fv(Γ)

C. Paulin (Université Paris-Saclay) Compilers 2025–26 132 / 156

Typing rules

The generalization of the type of an expression is only allowed at two places :
at the root of the program,
for the argument of a let definition.
the typing rule for let contains type schemes
the type of an application requires both the type of the function and the
type of its arguments to be simple types.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 133 / 156

The Hindley-Milner type system has two notable properties :
type checking and type inference are decidable (see next section),
the system ensures type safety : the evaluation of the well-typed program
cannot be stopped by an inconsistent operation (the proof extends the
one already given for simple types).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 134 / 156

Types

1 Types and safety
Types values and operations
Typing judgment and inference rules
Type safety
Type verification for FUN
Polymorphism
Type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 135 / 156

Approach

Writing a type checker for simple types in FUN was relatively easy
typing rules were syntax-directed,
some type annotations were required at the few places where we did not
have a simple way of guessing the right type.

In the Hindley-Milner system
the two rules for instantiation and generalization may be applied to any
expression.
we aim at full inference, without any annotation.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 136 / 156

Syntax-directed Hindley-Milner system

We restrict the place where generalization and instantiation may be applied.
Type schemes appear only in the environment.

We allow the instantiation of a type variable only when recovering from
the environment the type scheme associated to a variable.

1 fetch the type scheme σ associated to x in Γ,
2 instiantiate all universal variables of σ

Symmetrically, we allow generalization only for let definitions.
1 type the expression e1 in the environment Γ, and call τ1 the obtained type,
2 generalize all the free variables of τ1 that can possibly be generalized, to

obtain a type schema σ1,
3 type e2 in the extended environment where x is associated to σ1.

This syntax-directed variant of the Hindley-Milner system is equivalent to the
original version.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 137 / 156

Example

Γ1 = { x : α → α, y : α } and Γ2 = { f : ∀α.(α → α) → (α → α) }.

Γ1 ⊢ x : α → α

Γ1 ⊢ x : α → α Γ1 ⊢ y : α

Γ1 ⊢ x y : α

x : α → α, y : α ⊢ x (x y) : α

x : α → α ⊢ fun y -> x (x y) : α → α

⊢ fun x -> fun y -> x (x y) : (α → α) → (α → α) (∗)
⊢ let f = fun x -> fun y -> x (x y) in f (fun z -> z+1) : int → int

(∗)
Γ2 ⊢ f : (int → int) → (int → int)

Γ2, z : int ⊢ z : int Γ2, z : int ⊢ 1 : int

Γ2, z : int ⊢ z+1 : int

Γ2 ⊢ fun z -> z+1 : int → int

f : ∀α.(α → α) → (α → α) ⊢ f (fun z -> z+1) : int → int

C. Paulin (Université Paris-Saclay) Compilers 2025–26 138 / 156

Constraint generation and unification

The algorithm W implements type inference :
Each time we need a type which cannot be computed directly, we
introduce instead a new type variable.

type of the parameter of a function
types used for instantiating the universal variables of a type scheme Γ(x).

The actual types represented by these type variables are computed later,
when checking/solving the constraints related to the typing rules (for
instance, for application or addition).

When a typing rule requires an identity between two types τ1 and τ2

containing type variables α1, ..., αn, we try to unify these two types, that is
we look for an instantiation f of the type variables αi such that f (τ1) = f (τ2).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 139 / 156

Examples of unification

If τ1 = α → int and τ2 = (int → int) → β, we can unify the types τ1
and τ2 using the instantiation [α 7→ int → int, β 7→ int].
If τ1 = (α → int) → (α → int) and τ2 = β → β, we can unify the types
τ1 and τ2 using the instantiation [β 7→ α → int].
The types α → int and int cannot be unified.
The types α → int and α cannot be unified.

Unification criteria :
τ is always unified with itself,
unification of τ1 → τ ′1 with τ2 → τ ′2 requires unifying τ1 with τ2 and τ ′1 with
τ ′2,
unification of τ with a variable α, when α does not appears in τ , is done
by instantiating α by τ (if α appears in τ , unification is not possible),
in any other case, unification is not possible.

C. Paulin (Université Paris-Saclay) Compilers 2025–26 140 / 156

Algorithm W, example
Let us infer a type for the expression
let f = fun x -> fun y -> x(xy) in f (fun z->z+1).
We first focus on fun x -> fun y -> x (x y),

The variable x is given the type α, where α is a new type variable.
Similarly, the variable y is given the type β with β a new type variable.
Then we type the expression x (x y).

The application x y requires the type α of x to be a functional type, whose
parameter corresponds to the type β of y . Thus we unify α with β → γ, for γ
some new type variable, and define a first element of instantiation :
α = β → γ.
Therefore, the application x y has the type γ.
The application x (x y) requires the type α = β → γ of x to be a functional
type, whose parameter corresponds to the type γ of x y . Thus we unify
β → γ with γ → δ, for δ a new type variable. Then we get new instantiation
information : γ = δ = β.

We also deduce that the application x (x y) has the type β.
Finally, fun x -> fun y -> x (x y) get the type α → (β → β), which is
(β → β) → (β → β),
in the empty typing context this can be generalized as
∀β.(β → β) → (β → β).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 141 / 156

Algorithm W, example (continued)
We typecheck f (fun z -> z+1), in a context where f : ∀β.(β → β) → (β → β).

We fetch f : ∀β.(β → β) → (β → β) from the context, and instantiate the
universal variable β with a new type variable ζ.
We get for f the type (ζ → ζ) → (ζ → ζ).
Typing of fun z -> z+1.

The variable z is given the type η (new type variable).
We type the addition z+1.

z has the type η, that has to be unified with int. So η = int.
1 has the type int, that has to be unified with int

Thus z+1 has the type int.
Thus fun z -> z+1 has the type η → int, which is int → int.
To type the application itself, we have to unify the type (ζ → ζ) → (ζ → ζ)
of f with the type (int → int) → θ of a function that takes a parameter
of type int → int with θ a new type variable.
Thus we complete the instantiation with ζ = int and θ = int → int.

Finally, f (fun z -> z+1) has the type θ = int → int,

⊢ let f = fun x -> fun y -> x (x y) in f (fun z -> z+1) : int → int

C. Paulin (Université Paris-Saclay) Compilers 2025–26 142 / 156

Algorithm W, in caml

We take the raw abstract syntax of FUN, without type annotations.

type bop = Add | Sub | Mul | L t | Eq
type expr =

| I n t of i n t
| Bop of bop * expr * expr
| Var of s t r i n g
| Let of s t r i n g * expr * expr
| I f of expr * expr * expr
| App of expr * expr
| Fun of s t r i n g * expr
| F ix of s t r i n g * expr

C. Paulin (Université Paris-Saclay) Compilers 2025–26 143 / 156

Algorithm W, in caml

We extend simple types with a notion of type variable, and define a type
scheme as a pair of a simple type typ and a set vars of universally quantified
type variables.

type t yp =
| T In t
| TBool
| TFun of typ * typ
| TVar of s t r i n g

module VSet = Set . Make(S t r i n g)
type schema = { vars : VSet . t ; typ : typ }
l e t scheme_of_typ t = { vars= VSet . empty ; typ : t }

A typing environment associate a type scheme to each variable of the
program.

module SMap = Map. Make(S t r i n g)
type env = schema SMap. t

C. Paulin (Université Paris-Saclay) Compilers 2025–26 144 / 156

Algorithm W, in caml

We build a function type_inference: expr −> typ that computes a type for the
expression given as parameter, trying to get a type that is as general as
possible.
This function uses an auxiliary function new_var: unit −> string for creating
new type variables.

l e t t ype_ in fe rence t =
l e t new_var =

l e t cpt = re f 0 in
fun () −> i n c r cpt ; P r i n t f . s p r i n t f " t va r_%i " ! cp t

in

C. Paulin (Université Paris-Saclay) Compilers 2025–26 145 / 156

Representing substitutions

Type variables are associated to concrete types (or at least more precise
types) when new constraints are discovered and analyzed.
These associations are recorded in a hash table subst, that grows as the
inference proceeds.

l e t subst = Hashtbl . c reate 32 in

It allows sharing and avoid the cost of substitution
Thus, the types used during inference will contain type variables, some of
which will have a definition in subst.
To read such a type, we use auxiliary unfolding functions unfold and
unfold_full , which take a type τ and replace its type variables by their
definition in subst (for those that have one).

C. Paulin (Université Paris-Saclay) Compilers 2025–26 146 / 156

Unfolding functions

unfold is a “shallow” replacement : it replaces only what is necessary to
distinguish between the cases TInt, TBool, TFun or TVar.
The function unfold_full performs a complete replacement

l e t rec unfo ld t = match t with
| T In t | TBool | TFun _ −> t
| TVar a −>

i f Hashtbl .mem subst a then
unfo ld (Hashtbl . f i n d subst a)

else
t

in

l e t rec u n f o l d _ f u l l t = match unfo ld t with
| TFun (t1 , t2) −> TFun (u n f o l d _ f u l l t1 , u n f o l d _ f u l l t2)
| t −> t

in

C. Paulin (Université Paris-Saclay) Compilers 2025–26 147 / 156

Example using unfold

Check whether a type variable α appears in a type τ

l e t rec occur a t = match unfo ld t with
| T In t | TBool −> fa lse
| TVar b −> a=b
| TFun (t1 , t2) −> occur a t1 | | occur a t2

C. Paulin (Université Paris-Saclay) Compilers 2025–26 148 / 156

Core of the W algorithm

Consistency check is performed by an auxiliary function unify, which records
on the fly the new associations between type variables and concrete types.
Auxilliary functions :

instantiate : schema −> typ replaces each universal variable by a fresh
type variable.
generalize : typ −> env −> schema, returns a type scheme in which type
variables not free in the environment are generalized
unify : typ −> typ −> unit, try to unify its two arguments, adding the
constraints in the subst table, otherwise fails

C. Paulin (Université Paris-Saclay) Compilers 2025–26 149 / 156

Core of the W algorithm

l e t rec w e env = match e with
| I n t _ −> T In t
| Bop ((Add | Sub | Mul) , e1 , e2) −>

l e t t1 = w e1 env in
l e t t2 = w e2 env in
u n i f y t1 T In t ; u n i f y t2 T In t ;
T In t

| Bop (Lt , e1 , e2) −>
l e t t1 = w e1 env in
l e t t2 = w e2 env in
u n i f y t1 T In t ; u n i f y t2 T In t ;
TBool

| Bop (Eq , e1 , e2) −>
l e t t1 = w e1 env in
l e t t2 = w e2 env in
u n i f y t1 t2 ;
TBool

C. Paulin (Université Paris-Saclay) Compilers 2025–26 150 / 156

Core of the W algorithm (continued)

| I f (c , e1 , e2) −>
l e t t c = w c env in
l e t t1 = w e1 env in
l e t t2 = w e2 env in
u n i f y t c TBool ;
u n i f y t1 t2 ;
t1

| Var x −> i n s t a n t i a t e (SMap. f i n d x env)
| Let (x , e1 , e2) −>

l e t t1 = w e1 env in
l e t s t1 = genera l i ze t1 env in
l e t env ’ = SMap. add x st1 env in
w e2 env ’

| Fun (x , e) −>
l e t v = new_var () in
l e t env = SMap. add x (scheme_of_typ (TVar v)) env in
l e t t = w e env in
TFun (TVar v , t)

C. Paulin (Université Paris-Saclay) Compilers 2025–26 151 / 156

Core of the W algorithm (continued)

| App (e1 , e2) −>
l e t t1 = w e1 env in
l e t t2 = w e2 env in
l e t v = TVar (new_var ()) in
u n i f y t1 (TFun (t2 , v)) ;
v

| F ix (f , e) −>
l e t v = new_var () in
l e t env = SMap. add f (scheme_of_typ (TVar v)) env in
l e t t = w e env in
u n i f y t (TVar v) ;
t

C. Paulin (Université Paris-Saclay) Compilers 2025–26 152 / 156

Unification

l e t rec u n i f y t1 t2 = match unfo ld t1 , un fo ld t2 with
| T In t , T In t −> ()
| TBool , TBool −> ()
| TFun (t1 , t1 ’) , TFun (t2 , t2 ’)

−> u n i f y t1 t2 ; u n i f y t1 ’ t2 ’
| TVar a , TVar b when a=b −> ()
| TVar a , t | t , TVar a −>

i f occur a t then
f a i l w i t h " u n i f i c a t i o n e r r o r "

else
Hashtbl . add subst a t

| _ , _ −> f a i l w i t h " u n i f i c a t i o n e r r o r "

C. Paulin (Université Paris-Saclay) Compilers 2025–26 153 / 156

Instantiation

l e t i n s t a n t i a t e s =
l e t renaming = VSet . f o l d

(fun v r −> SMap. add v (TVar (new_var ())) r)
s . vars SMap. empty

in
l e t rec rename t = match unfo ld t with

| TVar a as t −>
(t ry SMap. f i n d a renaming with Not_found −> t)

| (T In t | TBool as t) −> t
| TFun (t1 , t2) −> TFun (rename t1 , rename t2)
in rename s . typ

C. Paulin (Université Paris-Saclay) Compilers 2025–26 154 / 156

Generalization

l e t rec f va r s t = match unfo ld t with
| T In t | TBool −> VSet . empty
| TFun (t1 , t2) −> VSet . union (f va r s t1) (f va r s t2)
| TVar x −> VSet . s i ng l e t on x

in
l e t rec schema_fvars s =

VSet . d i f f (f va r s s . typ) s . vars
in
l e t genera l i ze t env =

l e t f v t = f va r s t in
l e t fvenv = SMap. f o l d

(fun _ s vs −> VSet . union (schema_fvars s) vs)
env
VSet . empty

in
{ vars = VSet . d i f f f v t fvenv ; typ= t }

C. Paulin (Université Paris-Saclay) Compilers 2025–26 155 / 156

Summary

A notion of simple types (base types + function types)
Typing environments, typing judgments
Inference rules caracterizing “well-typed” expressions (including
consistency)
Proof that well-typed expression can be evaluated “safely”
Algorithms for type-checking and type inference

C. Paulin (Université Paris-Saclay) Compilers 2025–26 156 / 156

	Types and safety
	Types values and operations
	Typing judgment and inference rules
	Type safety
	Type verification for FUN
	Polymorphism
	Type inference

