Programming Languages, semantics, compilers

Types and safety C. Paulin (courtesy of T. Balabonski) M1 MPRI 2025–26

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Where are we?

Abstract syntax trees for the FUN language

Where are we? Big step semantics

Specifies the interpreter

Two possible choices for values:

- explicit <u>environments</u>: integers, booleans and closures
- 2 substitution: integer, booleans and abstractions (functions)

Rules

$$\begin{array}{c}
\overline{n \implies n} \\
\underline{e_1 \implies n_1 \quad e_2 \implies n_2} \\
\underline{e_1 \oplus e_2 \implies n_1 + n_2} \\
\underline{e_1 \implies v_1 \quad e_2[x := v_1] \implies v} \\
\underline{1 \text{ let } x = e_1 \text{ in } e_2 \implies v} \\
\hline
\underline{fun \quad x \rightarrow e \implies \text{fun } x \rightarrow e} \\
\underline{e_1 \implies \text{fun } x \rightarrow e \quad e_2 \implies v_2 \quad e[x := v_2] \implies v} \\
\underline{e_1 \implies \text{fun } x \rightarrow e \quad e_2 \implies v}
\end{array}$$

Where are we? Small step semantics

Describes how the computation is done

$$\frac{e_1 \rightarrow e_1'}{e_1 \oplus e_2 \rightarrow e_1' \oplus e_2} \qquad \frac{e_2 \rightarrow e_2'}{v_1 \oplus e_2 \rightarrow v_1 \oplus e_2'} \qquad \frac{n_1 + n_2 = n}{n_1 \oplus n_2 \rightarrow n}$$

$$\frac{e_1 \rightarrow e_1'}{\text{let } \textit{X} = e_1 \text{ in } e_2 \rightarrow \text{let } \textit{X} = e_1' \text{ in } e_2}$$

let
$$X = V$$
 in $e \rightarrow e[X := V]$

$$\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2}$$

$$rac{oldsymbol{e}_2
ightarrow oldsymbol{e}_2'}{oldsymbol{v}_1\,\,oldsymbol{e}_2
ightarrow oldsymbol{v}_1\,\,oldsymbol{e}_2'}$$

$$\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2} \qquad \frac{e_2 \rightarrow e_2'}{v_1 \ e_2 \rightarrow v_1 \ e_2'} \qquad \qquad \underbrace{(\text{fun $x \rightarrow e$)} \ v \rightarrow e[x := v]}$$

Our goal: MiniML

Design an interpreter (and then a compiler) for a more realistic functional language (MiniML)

- More operators on basic types
- Pairs
- Algebraic types and pattern-matching

Today:

- type-checking (theory and practice)
- implementation of type-checking and interpreter for MiniML

Objectives

- Another semantics of the FUN language
- Classification of the various kinds of values a program may deal with
- Make sure the program handles the data in a consistent way
- Reject inconsistent programs (before execution if possible)

Representation of data

- Data stored as a sequence of bits
- Example of a 32-bits memory word

Hexadecimal representation

$$(0-9 \ a = 10 = (1010)_2 \ b = 11 = (1011)_2$$

 $c = 12 = (1100)_2, \dots f = 15 = (1111)_2$
 $0 \times e^{0.6} = 67.48$

- The meaning of such a word depends on the context
 - memory address: 3 765 200 712,
 - a 32-bit signed integer in 2's complement: -529 766 584,
 - a simple precision floating point number (IEEE754 standard) : 15492936×2^{42} ,
 - a character string in Latin-1 encoding: "Holà".

Inconsistent operations

All operations in a programming language are constrained. In caml for instance,

- the addition 5 + 37 of two integers is possible,
- but the operations "5" + 37, 5 + (**fun** $x \rightarrow 37$) or 5(37) are not.

In our interpreter, we classified the possible values

```
type value =
    | VInt of int
    | VBool of bool
    | VClos of string * expr * env
```

The interpreter checked consistency between values and operators

Types: a classification of values

Programming languages usually distinguish numerous kinds of values, called types.

Basic types:

- numbers : int, double,
- booleans : bool,
- characters : char.
- character strings: string.

Richer types built over these base types.

- arrays : int [],
- functions : int -> bool,
- data structures : struct point { int x; int y; };,
- objects: class Point { public final int x, y; ... }.

Once this classification is set, each operation is defined to apply to elements of some given type.

Overloading

<u>overloading</u>: one operator may be applied to various types of elements, with different meanings depending on the type.

For instance, in python or java the operator + may apply:

- to two integers, in which case it denotes an addition: 5 + 37 = 42,
- to two strings, in which case it denotes a concatenation:
 "5" + "37" = "537".

Casting

<u>casting</u>: converting (implicitely or not) a value of some type to another type. The operation "5" + 37 mixing a string and an integer may evaluate to:

- 42 in php, where the string "5" is converted into the number 5,
- "537" in java, where the integer 37 is converted into the string "37".

Note that such a conversion requires an actual modification of the data!

- the number 37 is represented by 0x 00 00 00 25
- the string "37" by 0x 00 00 37 33.

Summary on types

- The type of a value gives the key for interpreting the associated data.
- It may be required for selecting the appropriate operations.
- Inconsistent types are likely to reveal programming errors (and programs that should not be executed).

Static versus dynamic type analysis

Handling types at runtime is costly in several ways:

- some memory has to be used to pair each data with an identification of its type,
- runtime tests are necessary to select the operations to apply to the data,
- execution may be interrupted when a type error appears, ...

In <u>dynamically typed</u> languages such as python, theses costs are paid in full. Conversely, <u>statically typed</u> languages such as C, java or caml save us at least a part of this runtime cost, since types are handled at compile time.

Static type analysis

- Static type analysis: type analysis is performed at compilation time
- It consists in associating with each expression in a program a type, which
 predicts the type of the value that will be obtained when evaluating the
 expression.
- This prediction is based on constraints given by each constructor of the abstract syntax.

Static type analysis: examples

$e\mathbf{1}\oplus e\mathbf{2}$

- the expression will produce an integer,
- for the operation to be consistent, both subexpressions e1 and e2 must also produce integers.

let
$$x = e$$
 in $x + 1$

- We associate to each variable the type of the value the variable refers to.
- The type of x is the type of the value produced by the expression e, we expect it to be the type of integers.

fun
$$x -> x + 1$$

• the type of a function makes the expected types of all parameters explicit as well as the type of the result

Type safety

This verification of type consistency before the execution of a program is associated to the idea, formulated by Robin Milner, that

Well-typed programs do not go wrong.

- static type analysis: reject absurd programs before they are ever executed (or released to clients...)
- limits:
 - type checking performed at compile time should be decidable (and reasonably fast)
 - identifying exactly buggy programs (like non-terminating ones) is usually undecidable (or costly)

Compromise

- give some <u>safety</u>, by rejecting many absurd programs,
- and let to programmers enough <u>expressiveness</u>, by not rejecting too many non-absurd programs.

Type annotation

Type analysis may require some amount of annotations from the programmer.

Annotate each subexpression, the compiler just <u>checks</u> consistency.

```
fun (x : int) ->
  let (y : int) = ((x : int) + (1 : int) : int)
  in (y : int)
```

Annotate only variables, and formal parameters of functions (C or Java). The compiler deduces the type of each expression.

fun
$$(x : int) \rightarrow let (y : int) = x+1 in y$$

Annotate only function parameters (sufficent for typechecking MiniML).

fun
$$(x : int) \rightarrow let y = x+1 in y$$

No annotation (Caml).

fun
$$x \rightarrow let y = x+1 in y$$

In this last case, the compiler must <u>infer</u> the type of each variable and expression, with no help from the programmer.

Advantage of static type-checking

- selecting the appropriate operation for overloaded operators is done at compilation time, and costs nothing at execution time.
- checking the consistency of types at compilation time allow early detection of many program inconsistencies, and consequently early correction of bugs.

Next

- formalize the notion of type and the associated constraints for FUN
- implement type checking and type inference
- formally state and prove that well-typed programs does not go wrong

Types

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Typing judgement

Well-typed programs are characterized by a set of rules that allow justififying that "in some context Γ , an expression e is consistent and has type τ ". This sentence is called a typing judgment, and is written

$$\Gamma \vdash e : \tau$$

The context Γ in a typing judgment maps a type to each variable of the expression e.

The typing judgment is not function but a relation between three elements : context, expression, type.

- some expressions e have no type (because they are inconsistent),
- in some situations, several types might be possible for a given expression and context.

Typing rules: consistency and types

Type of an expression for a fragment of the FUN language :

We need a base type for numbers, as well as function types.

$$\begin{array}{ccc} \tau & ::= & \mathrm{int} \\ & | & \tau \to \tau \end{array}$$

A type of the form $\tau_1 \to \tau_2$ is the type of a function that expects a parameter of type τ_1 and returns a result of type τ_2 .

Typing rules

We associate to each construction of the language a rule giving:

- the type such expression may have, and
- the constraints that have to be satisfied for the expression to be consistent.

Inference rules

An integer constant n has the type int.

$$\overline{\Gamma \vdash n : int}$$

• If both expressions e_1 and e_2 are consistent and of type int, then the expression $e_1 + e_2$ is consistent, also with type int.

$$\frac{\Gamma \vdash e_1 : \text{int} \qquad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

A variable has the type given by the environment.

$$\Gamma \vdash x : \Gamma(x)$$
 $x \in dom(\Gamma)$

A local variable is associated to the type of the expression that defines it.

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2}$$

Inference rules: functions

 In the body of a function, the formal parameter is seen as an ordinary variable, whose type corresponds to the expected type of the parameter.

$$\frac{\Gamma, \mathbf{X} : \tau_1 \vdash \mathbf{e} : \tau_2}{\Gamma \vdash \text{fun } \mathbf{X} \rightarrow \mathbf{e} : \tau_1 \rightarrow \tau_2}$$

A function has to be applied to an argument of the expected type.

$$\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau_1}$$

Inference rules for simple types: summary

The <u>simple types</u> for our fragment of the FUN language are fully defined by the six following inference rules.

$$\frac{\Gamma \vdash e_1 : \text{int} \qquad \frac{\Gamma \vdash e_1 : \text{int} \qquad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 \vdash e_2 : \text{int}}}{\Gamma \vdash e_1 \vdash e_2 : \text{int}}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash \text{let} \qquad x = e_1 \text{ in } e_2 : \tau_2}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{fun} \qquad x \rightarrow e : \tau_1 \rightarrow \tau_2} \qquad \frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau_1}$$

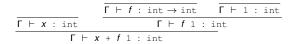
Typable expressions

A typing judgment is justified by a series of deductions obtained by applying the inference rules.

For instance, given the context $\Gamma = \{ x : \text{int}, f : \text{int} \rightarrow \text{int} \}$ we may reason as follow.

- \bigcirc $\Gamma \vdash x : int is valid, by the rule on variables.$
- ② $\Gamma \vdash f : int \rightarrow int$ is valid, by the rule on variables.
- **1** Γ Γ 1: int is valid, by the rule on constants.
- $\ \ \Gamma \vdash f \ 1 : int is valid, by the rule on application, using the already justified points 2. and 3.$
- **⑤** $\Gamma \vdash x + f$ 1 : int is valid, by the rule on addition, using 1. et 4.

This reasoning is called a <u>derivation</u>, it can be represented as a <u>derivation</u> <u>tree</u> whose root is the conclusion we want to justify.



Multiple derivations

```
\vdash \text{ fun } x \rightarrow x : \text{ int } \rightarrow \text{ int}
\vdash \text{ fun } x \rightarrow x : (\text{int } \rightarrow \text{int}) \rightarrow (\text{int } \rightarrow \text{int})
```

are both valid. Here, the absence of the context $\boldsymbol{\Gamma}$ means that we consider the empty context.

Untypable expressions

- We may need to prove that an expression has no type : no judgment $\Gamma \vdash e : \tau$ can be justified using the typing rules
- Show that any attempt at building a typing tree for the expression necessarily fails
- Inversion properties for the typing judgement
 - Given the form of the judgement, the only rule(s) which applies is ... and the the premisses hould also be derivable

Untypable expressions : examples

(5 37),

- only the application rule can lead to a judgment $\Gamma \vdash 5 \ 37 : \tau$,
- the two premises $\Gamma \vdash 5 : \tau' \rightarrow \tau$ and $\Gamma \vdash 37 : \tau'$ should be derivable
- no rule allows giving a functional type to an integer constant (the only rule would give the typing judgment $\Gamma \vdash 5 : int$).

fun $x \rightarrow x x$.

 a derivation tree for a judgment Γ ⊢ fun x -> x x : τ would necessarily have the shape

$$\frac{\Gamma, x : \tau_1 \vdash x : \tau_1 \rightarrow \tau_2 \qquad \Gamma, x : \tau_1 \vdash x : \tau_1}{\Gamma, x : \tau_1 \vdash x : x : \tau_2}$$

$$\frac{\Gamma, x : \tau_1 \vdash x : x : \tau_2}{\Gamma \vdash \text{fun } x \rightarrow x : x : \tau_2}$$

• the premise $\Gamma, \mathbf{x} : \tau_1 \vdash \mathbf{x} : \tau_1 \to \tau_2$ cannot be justified : the inference rules allow only the type τ_1 for \mathbf{x} , and there are no (finite) types τ_1 and τ_2 such that $\tau_1 = \tau_1 \to \tau_2$.

Reasoning on well-typed expressions

Prove that for any context Γ , any expression e and any type τ : if $\Gamma \vdash e : \tau$ is valid then all the free variables of e are in the domain of Γ .

- By induction on the structure of the typing derivation tree.
- We have one proof case for each inference rule,
- each premise of the rule yields an induction hypothesis.

Proof (1/2)

Property which depends on Γ , e and τ : $\P(\Gamma, e, \tau) \stackrel{\text{def}}{=} \text{fv}(e) \subseteq \text{dom}(\Gamma)$ Proof by induction on $\Gamma \vdash e : \tau$.

- Case $\Gamma \vdash n$: int. We have $fv(n) = \emptyset$, and of course $\emptyset \subseteq dom(\Gamma)$.
- Case $\Gamma \vdash x : \Gamma(x)$. We have $fv(x) = \{x\}$, and the application of the rule indeed assumes $x \in dom(\Gamma)$.
- Case $\Gamma \vdash e_1 + e_2 : \texttt{int}$, with premises $\Gamma \vdash e_1 : \texttt{int}$ and $\Gamma \vdash e_2 : \texttt{int}$. The premises give two induction hypotheses $\mathsf{fv}(e_1) \subseteq \mathsf{dom}(\Gamma)$ and $\mathsf{fv}(e_2) \subseteq \mathsf{dom}(\Gamma)$. By definition of free variables we have $\mathsf{fv}(e_1 + e_2) = \mathsf{fv}(e_1) \cup \mathsf{fv}(e_2)$. With the induction hypotheses we deduce that $\mathsf{fv}(e_1) \cup \mathsf{fv}(e_2) \subseteq \mathsf{dom}(\Gamma)$, and therefore $\mathsf{fv}(e_1 + e_2) \subseteq \mathsf{dom}(\Gamma)$.

Proof (2/2)

- Case $\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau_2$, with premises $\Gamma \vdash e_1 : \tau_1$ and $\Gamma, x : \tau_1 \vdash e_2 : \tau_2$. The premises give two induction hypotheses $\text{fv}(e_1) \subseteq \text{dom}(\Gamma)$ and $\text{fv}(e_2) \subseteq \text{dom}(\Gamma) \cup \{x\}$ (note that the premise related to the judgment $\Gamma, x : \tau_1 \vdash e_2 : \tau_2$ mentions an environment extended with the variable x). By definition we have $\text{fv}(\text{let } x = e_1 \text{ in } e_2) = \text{fv}(e_1) \cup (\text{fv}(e_2) \setminus \{x\})$. The first induction hypothesis ensures that $\text{fv}(e_1) \subseteq \text{dom}(\Gamma)$. The second induction hypothesis ensures that $\text{fv}(e_2) \subseteq \text{dom}(\Gamma) \cup \{x\}$, from which we deduce $\text{fv}(e_2) \setminus \{x\} \subseteq \text{dom}(\Gamma)$. Therefore we have $\text{fv}(\text{let } x = e_1 \text{ in } e_2) \subseteq \text{dom}(\Gamma)$.
- Both cases related to functions are similar to the cases above.

Full rules for FUN

New base type bool for boolean values : $\tau := \text{int} \mid \text{bool} \mid \tau \to \tau$ Three additional typing rules for the missing constructs.

• An expression $e_1 < e_2$ has type bool whenever e_1 and e_2 are numbers.

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 < e_2 : \text{bool}}$$

 A conditional requires the condition to be a boolean and the two branches to have the same type

$$\frac{\Gamma \vdash c : \text{bool} \qquad \Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash \text{if } c \text{ then } e_1 \text{ else } e_2 : \tau}$$

• A recursive expression must have the same type τ as the recursive references it contains.

If the expression e has type τ , in an environment where the identifier x also has this type τ , then the expression fix x = e is consistent of type τ .

$$\frac{\Gamma, \mathbf{X} : \tau \vdash \mathbf{e} : \tau}{\Gamma \vdash \text{fix } \mathbf{X} = \mathbf{e} : \tau}$$

Types

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Typing and big step semantics

Using the notion of natural semantics, we can prove the following statement relating the typing and the evaluation of an expression.

```
If \Gamma \vdash e : \tau and e \Longrightarrow v then \Gamma \vdash v : \tau.
```

This means that the evaluation relation preserves the consistency and the types of expressions.

- However, we assume that the evaluation is indeed possible and reaches a value.
- It does not prove that the evaluation of well-typed programs indeed produce a value
- It says nothing about programs that break or loop.
- We need the small step semantics to get an actual safety property.

Type safety, small step version

With a reduction semantics, the safety property may be state as: the evaluation of a well-typed program never blocks on an inconsistent operation. We formalize the property through two lemmas.

- Progress lemma: a well-typed expression is never blocked.
 - $\underline{\mathsf{lf}} \quad \Gamma \vdash e : \tau \quad \mathsf{then} \ \ e \ \mathsf{is} \ \mathsf{a} \ \mathsf{value} \ \mathsf{or} \ \mathsf{there} \ \mathsf{is} \ \ e' \ \mathsf{such} \ \mathsf{that} \quad e \to e'.$
- Type preservation lemma: reduction preserves types.
 - If $\Gamma \vdash e : \tau$ and $e \rightarrow e'$ then $\Gamma \vdash e' : \tau$.

Historically, the type preservation lemma was called subject reduction

Consequence of progress and type preservation

Starting with a well-typed expression e_1 with type τ :

• if e_1 is not already a value, then it reduces to e_2 , which is still well-typed with type τ and thus, in case it is not a value, reduces in turn to e_3 well-typed of type τ , on so on.

$$(e_1:\tau) \rightarrow (e_2:\tau) \rightarrow (e_3:\tau) \rightarrow \dots$$

- At the far right side of this sequence, there are two possible scenarios :
 - either we reach a value v (still well-typed with type τ),
 - or the reduction go on infinitely.
 - The reduction cannot end with a blocked expression.

Progress

If $\Gamma \vdash e : \tau$, then e is a value, or there is e' such that $e \to e'$. We consider the simple types for the fragment of the FUN language defined by the following rules.

$$\frac{\Gamma \vdash e_1 : \text{int} \qquad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \qquad \Gamma, x : \tau_1 \vdash e_2 : \tau_2}{\Gamma \vdash x : \Gamma(x)}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \text{fun } x \rightarrow e : \tau_1 \rightarrow \tau_2}$$

$$\frac{\Gamma \vdash e_1 : \tau_2 \rightarrow \tau_1 \qquad \Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau_1}$$

Proof of progress

We will prove the lemma by induction on the derivation of $\Gamma \vdash e : \tau$.

- Case $\Gamma \vdash n$: int. Then n is a value.
- Case $\Gamma \vdash \text{fun } x \rightarrow e : \tau_1 \rightarrow \tau_2$. Then fun $x \rightarrow e \text{ is a value}$.
- Case $\Gamma \vdash e_1 e_2 : \tau_1$, with $\Gamma \vdash e_1 : \tau_2 \to \tau_1$ and $\Gamma \vdash e_2 : \tau_2$. Induction hypotheses give us the two following disjunctions.
 - \bullet e₁ is a value or $e_1 \rightarrow e'_1$,
 - 2 e_2 is a value or $e_2 \rightarrow e'_2$.

We reason by case on these disjunctions.

- If $e_1 \rightarrow e_1'$, then $e_1 \ e_2 \rightarrow e_1' \ e_2$: goal completed.
- Otherwise, e_1 is a value v_1 .
 - If $e_2
 ightarrow e_2'$, then $v_1 \ e_2
 ightarrow v_1 \ e_2'$: goal completed.
 - Otherwise, e_2 is a value v_2 . Since we have as hypothesis the typing judgment $\Gamma \vdash v_1 : \tau_2 \to \tau_1$, we know that v_1 necessarily has the shape fun $x \to e$ (classification lemma detailed below). Then we have

$$e_1 e_2 = (\text{fun } x \rightarrow e) v_2 \rightarrow e[x := v_2]$$

which completes our case.

Other cases are similar.

Classification lemma for typed values

Let v be a value such that $\Gamma \vdash v : \tau$. Then :

- if $\tau = \text{int}$, then v has the shape n,
- if $\tau = \tau_1 \rightarrow \tau_2$, then v has the shape fun $x \rightarrow e$.

Proof by case on the last rule applied in the derivation of $\Gamma \vdash v : \tau$, knowing that the only two possible shapes for a value are : n or fun $x \rightarrow e$.

Proof of type Preservation

If $e \to e'$ then for all τ , if $\Gamma \vdash e : \tau$ then $\Gamma \vdash e' : \tau$. Proof by induction on the derivation of $e \to e'$.

- Case $n_1 + n_2 \rightarrow n$ with $n = n_1 + n_2$. The hypothesis $\Gamma \vdash n_1 + n_2 : \tau$ implies $\tau = \text{int } (\text{inversion})$.

 Moreover $\Gamma \vdash n : \text{int.}$
- Case $e_1 + e_2 \rightarrow e_1' + e_2$ with $e_1 \rightarrow e_1'$. Induction hypothesis "if $\Gamma \vdash e_1 : \tau'$, then $\Gamma \vdash e_1' : \tau'$ ". The hypothesis $\Gamma \vdash e_1 + e_2 : \tau$ implies $\tau = \text{int}$, $\Gamma \vdash e_1 : \text{int}$ and $\Gamma \vdash e_2 : \text{int}$ (inversion lemma). Thus by induction hypothesis $\Gamma \vdash e_1' : \text{int}$ and

$$\frac{\Gamma \vdash e'_1 : int \qquad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 + e_2 : int}$$

Proof of type Preservation (continued)

- Case (fun x in e) v → e[x := n].
 From Γ ⊢ (fun x -> e) v : τ we know there is τ' such that Γ ⊢ fun x -> e : τ' → τ and Γ ⊢ v : τ' and from Γ ⊢ fun x -> e : τ' → τ we further deduce Γ, x : τ' ⊢ e : τ (inversion lemma).
 We have Γ, x : τ' ⊢ e : τ and Γ ⊢ v : τ', from which we deduce Γ ⊢ e[x := v] : τ using a substitution lemma.
- The other cases are similar.

Inversion lemma

- If $\Gamma \vdash e_1 + e_2 : \tau \text{ then } \tau = \text{int}, \Gamma \vdash e_1 : \text{int and } \Gamma \vdash e_2 : \text{int}.$
- If $\Gamma \vdash e_1 e_2 : \tau$ then there is τ' such that $\Gamma \vdash e_1 : \tau' \to \tau$ and $\Gamma \vdash e_2 : \tau'$.
- If $\Gamma \vdash \text{fun } x \rightarrow e : \tau$ then there are τ_1 and τ_2 such that $\tau = \tau_1 \rightarrow \tau_2$ and $\Gamma, x : \tau_1 \vdash e : \tau_2$.

Proof by case on the last rule of the typing derivation.

Substitution lemma

Replacing a typed variable by an identically typed expression preserves typing.

If
$$\Gamma, x : \tau' \vdash e : \tau$$
 and $\Gamma \vdash e' : \tau'$ then $\Gamma \vdash e[x := e'] : \tau$.

Proof by induction on the derivation of Γ , $x : \tau' \vdash e : \tau$.

Type safety theorem

The following theorem combines the progress lemma and the type preservation lemme.

If $\Gamma \vdash e : \tau$ and $e \rightarrow^* e'$ with e' not reducible, then e' is a value.

The proof is by recurrence on the length of the reduction sequence $e \rightarrow^* e'$.

Summary

- The safety property of typed expressions establishes a link between a static property (type consistency) and a dynamic property (evaluation without errors) of programs.
- It is still possible that a well-typed program fails to reach a value, in case the evaluation never ends.
- More generally, programming languages with a strict typing discipline are able to detect many errors early (at compilation time), which results in less errors at execution time.

Types

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Writing a type-checker

- We use caml to write a type checker from FUN programs with enough annotations
- We follow the typing rules given in the previous sections
- This program consists in a function type_expr, which takes as parameters an expression e and an environment Γ and which:
 - returns the unique type that can be associated to e in the environment Γ if e
 is indeed consistent in this environment,
 - fails otherwise.

Data types for type-checking

(caml) datatype to represent the types of the FUN language :

```
type typ = | TInt | TBool | TFun of typ * typ
```

Abstract syntax trees of the FUN language now include some type annotations in functions and fixpoints.

```
type bop = Add | Sub | Mul | Lt | Eq
type expr =
    ...
    | Fun of string * typ * expr
    | Fix of string * typ * expr
```

The environment is an association table between variable identifiers (string) and FUN types.

```
module Env = Map.Make(String)
type type_env = typ Env.t
```

The type-checking function

```
let rec type expr (e:expr) (env : type env) : typ =
 match e with
      Int -> TInt
     Var(x) \rightarrow Env. find x env
     Bop(Add, e1, e2) ->
       let t1 = type expr e1 env in
       let t2 = type expr e2 env in
       if t1 = TypInt \&\& t2 = TypInt then TypInt
       else failwith "type error"
      If (c, e1, e2) \rightarrow
       let tc = type expr c env in
       let t1 = type_expr e1 env in
       let t2 = type expr e2 env in
       if tc = TBool && t1 = t2 then t1
       else failwith "type_error"
```

The type-checking function

```
\mid Let(x, e1, e2) \rightarrow
   let t1 = type expr e1 env in
   type expr e2 (Env.add x t1 env)
\mid Fun(x, tx, e) \rightarrow
   let te = type expr e (Env.add x tx env) in
   TFun(tx, te)
\mid App(f, a) \rightarrow
   let tf = type expr f env in
   let ta = type expr a env in
   begin match tf with
     | TFun(tx, te) ->
        if tx = ta then te
       else failwith "type_error"
     _ -> failwith "type error"
     end
```

The type-checking function

```
Fix(f, t, e) ->
  let env' = Env.add f t env in
  let te = type_expr e env' in
  if te = t then t
  else failwith "type_error"
```

Types

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Limit of simple types

With the simple types, an expression such as

$$fun x \rightarrow x$$

may have several distinct types (same code works for different sort of datas). However, it can have only one type at a time. In particular, in an expression such as

```
let f = fun x \rightarrow x in f f
```

we have to choose only one type for the f, and the expression cannot be typed.

This is called a monomorphic type (literally: one shape).

Parametric polymorphism

- The possibility of using parametrized types, which cover many variants of a given shape of type.
- We extend the grammar of the types τ with two new elements :
 - type variables, or type parameters, written α , β , ... denoting indeterminate types,
 - a universal quantification $\forall \alpha.\tau$ denoting a <u>polymorphic</u> type, where the type variable α may, in τ , denote any type.

Polymorphic types in FUN

The set of types is then defined by the extended grammar

$$\begin{array}{cccc} \tau & ::= & \text{int} \\ & \mid & \tau \rightarrow \tau \\ & \mid & \alpha \\ & \mid & \forall \alpha. \tau \end{array}$$

Instantiation

If an expression e has a polymorphic type $\forall \alpha. \tau$, then for any type τ' we can consider e to also be of type $\tau[\alpha := \tau']$

$$\frac{\Gamma \vdash \mathbf{e} : \forall \alpha.\tau}{\Gamma \vdash \mathbf{e} : \tau[\alpha := \tau']}$$

The notion of type substitution $\tau[\alpha := \tau']$ is defined by a set of equations.

$$\begin{split} &\inf[\alpha:=\tau'] &= &\inf\\ &\beta[\alpha:=\tau'] &= \begin{cases} \tau' & \text{if } \alpha=\beta\\ \beta & \text{if } \alpha\neq\beta \end{cases}\\ &(\tau_1\to\tau_2)[\alpha:=\tau'] &= &\tau_1[\alpha:=\tau']\to\tau_2[\alpha:=\tau']\\ &(\forall\beta.\tau)[\alpha:=\tau'] &= \begin{cases} \forall\beta.\tau & \text{if } \alpha=\beta\\ \forall\beta.\tau[\alpha:=\tau'] & \text{if } \alpha\neq\beta \text{ and } \beta\not\in\operatorname{fv}(\tau') \end{cases} \end{split}$$

The notion of free type variable is also defined similarly.

$$\begin{array}{rcl} \mathsf{fV}(\mathsf{int}) & = & \emptyset \\ \mathsf{fV}(\alpha) & = & \{\alpha\} \\ \mathsf{fV}(\tau_1 \to \tau_2) & = & \mathsf{fV}(\tau_1) \cup \mathsf{fV}(\tau_2) \\ \mathsf{fV}(\forall \alpha.\tau) & = & \mathsf{fV}(\tau) \setminus \{\alpha\} \end{array}$$

Generalisation

When an expression has a type τ containing a parameter α , and this parameter is not constrained in any way by the context Γ (does not appear in Γ), then we can consider e as a polymorphic expression, with type $\forall \alpha. \tau$.

$$\frac{\Gamma \vdash \mathbf{e} : \tau \qquad \alpha \not\in \mathsf{fv}(\Gamma)}{\Gamma \vdash \mathbf{e} : \forall \alpha.\tau}$$

Formally, the set of free type variables of an environment $\Gamma = \{ x_1 : \tau_1, \dots, x_n : \tau_n \}$ is defined by :

$$\mathsf{fv}(\{x_1:\tau_1,\ldots,x_n:\tau_n\}) = \bigcup_{1\leq i\leq n} \mathsf{fv}(\tau_i)$$

Examples and counter-examples

We can now give to the identity function **fun** $x \to x$ the polymorphic type $\forall \alpha. \alpha \to \alpha$, stating that this function takes an argument of <u>any type</u> and returns a result of the same type.

$$\frac{ \overline{\mathbf{x} : \alpha \vdash \mathbf{x} : \alpha}}{\vdash \text{ fun } \mathbf{x} \rightarrow \mathbf{x} : \alpha \rightarrow \alpha} \qquad \alpha \notin \mathbf{fv}(\emptyset)$$

$$\vdash \text{ fun } \mathbf{x} \rightarrow \mathbf{x} : \forall \alpha.\alpha \rightarrow \alpha$$

The key here is that **fun** x -> x can have the type $\alpha \to \alpha$ in the empty context, and that the empty context, in particular, puts no constraint on α .

Example

It is then possible to type the expression **let** $f = \mathbf{fun} \ \mathbf{x} -> \mathbf{x} \ \mathbf{in} \ \mathbf{f}$. We type the expression $\mathbf{f} \ \mathbf{f}$, in an environment $\Gamma = \{ f : \forall \alpha. \alpha \to \alpha \}$ with which we can complete the derivation as follows.

$$\frac{ \begin{array}{c} \overline{\Gamma \vdash f : \forall \alpha . \alpha \rightarrow \alpha} \\ \hline \Gamma \vdash f : (\text{int} \rightarrow \text{int}) \rightarrow (\text{int} \rightarrow \text{int}) \end{array} \qquad \overline{\begin{array}{c} \overline{\Gamma \vdash f : \forall \alpha . \alpha \rightarrow \alpha} \\ \hline \Gamma \vdash f : \text{int} \rightarrow \text{int} \end{array}}$$

Other solution

Note that this is not the only solution:

- we can replace the concrete type int by a type variable β ,
- the resulting type could be generalized

$$\frac{\Gamma \vdash f : \forall \alpha . \alpha \to \alpha}{\Gamma \vdash f : (\beta \to \beta) \to (\beta \to \beta)} \qquad \frac{\Gamma \vdash f : \forall \alpha . \alpha \to \alpha}{\Gamma \vdash f : \beta \to \beta}$$

$$\frac{\Gamma \vdash f : \beta \to \beta}{\Gamma \vdash f : \beta \to \beta} \qquad \beta \not\in \mathsf{fv}(\Gamma)$$

Counter-example

- This system however does not allow the type $\alpha \to \forall \alpha.\alpha$ for the identity function **fun** x -> x.
- Indeed, this would require giving to x the type ∀α.α in a context
 Γ = { x : α }.
- Our axiom rule only allows the derivation of Γ ⊢ x : α,
 α cannot be generalized, since it appears in Γ.
- Thus we (fortunately) cannot use polymorphic types to allow the ill-formed expression (fun x -> x) 5 37.

Example: composition function

Let us show that composition function fun f -> fun g -> fun x -> g (f x) has the polymorphic type $\forall \alpha\beta\gamma.(\alpha\to\beta)\to(\beta\to\gamma)\to(\alpha\to\gamma).$ Write Γ the environment $\{\, {\rm f}: \alpha\to\beta, {\rm g}: \beta\to\gamma, {\rm x}: \alpha\,\}.$ We can build the following derivation :

$$\frac{\Gamma \vdash g : \beta \rightarrow \gamma}{\Gamma \vdash g : \beta \rightarrow \gamma} \frac{\overline{\Gamma \vdash f : \alpha \rightarrow \beta} \quad \overline{\Gamma \vdash x : \alpha}}{\Gamma \vdash f x : \beta}$$

$$\overline{\Gamma \vdash g \quad (f x) : \gamma}$$

$$\vdash \text{fun } f \rightarrow \text{fun } g \rightarrow \text{fun } x \rightarrow g \quad (f x) : (\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)} \quad \alpha, \beta, \gamma \not\in \text{fv}(\emptyset)$$

$$\vdash \text{fun } f \rightarrow \text{fun } g \rightarrow \text{fun } x \rightarrow g \quad (f x) : \forall \alpha \beta \gamma. (\alpha \rightarrow \beta) \rightarrow (\beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)}$$

Exercise: show that this composition function can also have the type $\forall \alpha \beta. (\alpha \to \beta) \to \forall \gamma. (\beta \to \gamma) \to (\alpha \to \gamma)$.

Undecidability of type-checking

Without annotations from the programmer, the two following questions about polymorphic types in FUN are undecidable:

- type inference : an expression e being given, determine whether there is a type τ such that $\Gamma \vdash e : \tau$ (and provide the type),
- type verification : an expression e and a type τ being given, determine whether $\Gamma \vdash e : \tau$.

These undecidability results still hold for any language extending the FUN kernel.

Restricting polymorphism

- To check the type consistency of a program, or infer the type of a program, we have to either require some amount of annotations or restrict the use of polymorphism.
- Each language sets is own balance between the amount of annotation and the expressiveness of the type system.
- In caml, polymorphism is restricted by a simple fact :
 - we cannot write any explicit quantifier in a type.
 - every type variable that is globally free is implicitly considered to be universally quantified.

Example

The caml type for the first projection of a pair

is actually the generalized type $\forall \alpha \beta. \alpha \times \beta \to \alpha$. Similarly, the caml type for the left iterator of a list

List.fold_left: ('a
$$\rightarrow$$
 'b \rightarrow 'a) \rightarrow 'a \rightarrow 'b list \rightarrow 'a

has to be understood as $\forall \alpha \beta. (\alpha \rightarrow \beta \rightarrow \alpha) \rightarrow \alpha \rightarrow \beta \text{ list } \rightarrow \alpha.$

Hindley-Milner system

- This restricted polymorphism is common to all languages of the ML family, and called the Hindley-Milner system.
- It only allows "prenex" quantification
- It distinguishes the notion of type τ without quantification, and the notion type scheme σ which is a type extended with global quantifiers.

Hindley-Milner system for FUN

For our fragment of FUN, this can be described by the following grammar.

$$\tau ::= int
\mid \tau \to \tau
\mid \alpha
\sigma ::= \forall \alpha_1 \dots \forall \alpha_n. \tau$$

In this system, we can work with type schemes such as $\forall \alpha.\alpha \to \alpha$ and $\forall \alpha\beta\gamma.(\alpha \to \beta) \to (\beta \to \gamma) \to (\alpha \to \gamma)$, but we cannot express a type with the shape $(\forall \alpha.\alpha \to \alpha) \to (\forall \alpha.\alpha \to \alpha)$.

In the Hindley-Milner system, we adapt contexts and typing judgments to allow the association of a type scheme to a variable or an expression:

$$X_1:\sigma_1,\ldots,X_n:\sigma_n\vdash e:\sigma$$

Note that a type scheme with zero quantifier is just a type.

Typing rules

Typing rules are also adapted in a way such that type schemes are authorized only at some specific places.

Typing rules

The generalization of the type of an expression is only allowed at two places:

- at the root of the program,
- for the argument of a let definition.
- the typing rule for let contains type schemes
- the type of an application requires both the type of the function and the type of its arguments to be simple types.

The Hindley-Milner type system has two notable properties:

- type checking and type inference are decidable (see next section),
- the system ensures type safety: the evaluation of the well-typed program cannot be stopped by an inconsistent operation (the proof extends the one already given for simple types).

Types

- Types and safety
 - Types values and operations
 - Typing judgment and inference rules
 - Type safety
 - Type verification for FUN
 - Polymorphism
 - Type inference

Approach

Writing a type checker for simple types in FUN was relatively easy

- typing rules were syntax-directed,
- some type annotations were required at the few places where we did not have a simple way of guessing the right type.

In the Hindley-Milner system

- the two rules for instantiation and generalization may be applied to any expression.
- we aim at <u>full inference</u>, without any annotation.

Syntax-directed Hindley-Milner system

We restrict the place where generalization and instantiation may be applied. Type schemes appear only in the environment.

- We allow the instantiation of a type variable only when recovering from the environment the type scheme associated to a variable.
 - fetch the type scheme σ associated to x in Γ ,
 - \circ instiantiate all universal variables of σ
- Symmetrically, we allow generalization only for let definitions.
 - **1** type the expression e_1 in the environment Γ , and call τ_1 the obtained type,
 - ② generalize <u>all</u> the free variables of τ_1 that can possibly be generalized, to obtain a type schema σ_1 .
 - **1** type e_2 in the extended environment where x is associated to σ_1 .

This syntax-directed variant of the Hindley-Milner system is equivalent to the original version.

Example

$$\Gamma_1 = \{ x : \alpha \to \alpha, y : \alpha \} \text{ and } \Gamma_2 = \{ f : \forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha) \}.$$

$$\frac{\overline{\Gamma_1 \vdash x : \alpha \to \alpha} \qquad \overline{\Gamma_1 \vdash y : \alpha}}{\frac{\Gamma_1 \vdash x : \alpha \to \alpha}{x : \alpha \to \alpha, y : \alpha \vdash x (x y) : \alpha}}$$

$$\frac{x : \alpha \to \alpha, y : \alpha \vdash x (x y) : \alpha}{x : \alpha \to \alpha \vdash \text{fun } y \to x (x y) : \alpha \to \alpha}$$

$$\vdash \text{fun } x \to \text{fun } y \to x (x y) : (\alpha \to \alpha) \to (\alpha \to \alpha) \qquad (*)$$

$$\vdash \text{let } f = \text{fun } x \to \text{fun } y \to x (x y) \text{ in } f (\text{fun } z \to z + 1) : \text{int} \to \text{int}$$

$$\frac{\overline{\Gamma_{2},z: \text{int} \vdash z: \text{int}} \quad \overline{\Gamma_{2},z: \text{int} \vdash 1: \text{int}}}{\overline{\Gamma_{2},z: \text{int}} \quad \overline{\Gamma_{2},z: \text{int}} \vdash 1: \text{int}}}{\underline{\Gamma_{2},z: \text{int}} \quad \overline{\Gamma_{2},z: \text{int}} \quad \overline{\Gamma_{2},z: \text{int}}}$$

$$(*) \qquad f: \forall \alpha. (\alpha \to \alpha) \to (\alpha \to \alpha) \vdash f \text{ (fun } z \to z+1): \text{int} \to \text{int}}$$

Constraint generation and unification

The algorithm W implements type inference:

- Each time we need a type which cannot be computed directly, we introduce instead a new type variable.
 - type of the parameter of a function
 - types used for instantiating the universal variables of a type scheme $\Gamma(x)$.
- The actual types represented by these type variables are computed <u>later</u>, when checking/solving the constraints related to the typing rules (for instance, for application or addition).
 - When a typing rule requires an identity between two types τ_1 and τ_2 containing type variables $\alpha_1, ..., \alpha_n$, we try to unify these two types, that is we look for an instantiation f of the type variables α_i such that $f(\tau_1) = f(\tau_2)$.

Examples of unification

- If $\tau_1 = \alpha \rightarrow \text{int}$ and $\tau_2 = (\text{int} \rightarrow \text{int}) \rightarrow \beta$, we can unify the types τ_1 and τ_2 using the instantiation [$\alpha \mapsto \text{int} \rightarrow \text{int}$, $\beta \mapsto \text{int}$].
- If $\tau_1 = (\alpha \to \text{int}) \to (\alpha \to \text{int})$ and $\tau_2 = \beta \to \beta$, we can unify the types τ_1 and τ_2 using the instantiation $[\beta \mapsto \alpha \to \text{int}]$.
- The types $\alpha \rightarrow \text{int}$ and int cannot be unified.
- The types $\alpha \to \text{int}$ and α cannot be unified.

Unification criteria:

- τ is always unified with itself,
- unification of $\tau_1 \to \tau_1'$ with $\tau_2 \to \tau_2'$ requires unifying τ_1 with τ_2 and τ_1' with τ_2' ,
- unification of τ with a variable α , when α does not appears in τ , is done by instantiating α by τ (if α appears in τ , unification is not possible),
- in any other case, unification is not possible.

Algorithm W, example

Let us infer a type for the expression

```
let f = \text{fun } X \rightarrow \text{fun } y \rightarrow X(Xy) \text{ in } f \text{ (fun } Z \rightarrow Z+1).
```

We first focus on fun $x \rightarrow fun y \rightarrow x (x y)$,

- The variable x is given the type α , where α is a new type variable.
- Similarly, the variable y is given the type β with β a new type variable.
- Then we type the expression x(xy).
 - The application x y requires the type α of x to be a functional type, whose parameter corresponds to the type β of y. Thus we unify α with $\beta \to \gamma$, for γ some new type variable, and define a first element of instantiation : $\alpha = \beta \to \gamma$.
 - Therefore, the application x y has the type γ .
 - The application x (x y) requires the type α = β → γ of x to be a functional type, whose parameter corresponds to the type γ of x y. Thus we unify β → γ with γ → δ, for δ a new type variable. Then we get new instantiation information : γ = δ = β.

We also deduce that the application x(x, y) has the type β .

- Finally, fun $x \to \text{fun } y \to x \ (x \ y)$ get the type $\alpha \to (\beta \to \beta)$, which is $(\beta \to \beta) \to (\beta \to \beta)$,
- in the empty typing context this can be generalized as $\forall \beta.(\beta \to \beta) \to (\beta \to \beta)$.

Algorithm W, example (continued)

We typecheck f (fun $z \rightarrow z+1$), in a context where $f : \forall \beta.(\beta \rightarrow \beta) \rightarrow (\beta \rightarrow \beta)$.

- We fetch $f: \forall \beta. (\beta \to \beta) \to (\beta \to \beta)$ from the context, and instantiate the universal variable β with a new type variable ζ . We get for f the type $(\zeta \to \zeta) \to (\zeta \to \zeta)$.
- Typing of fun $z \rightarrow z+1$.
 - The variable z is given the type η (new type variable).
 - We type the addition z+1.
 - z has the type η , that has to be unified with int. So $\eta = \text{int.}$
 - 1 has the type int, that has to be unified with int

Thus z+1 has the type int.

Thus fun $z \rightarrow z+1$ has the type $\eta \rightarrow \text{int}$, which is $\text{int} \rightarrow \text{int}$.

• To type the application itself, we have to unify the type $(\zeta \to \zeta) \to (\zeta \to \zeta)$ of f with the type $(int \to int) \to \theta$ of a function that takes a parameter of type $int \to int$ with θ a new type variable.

Thus we complete the instantiation with $\zeta = \text{int}$ and $\theta = \text{int} \rightarrow \text{int}$.

Finally, f (fun $z \rightarrow z+1$) has the type $\theta = \text{int} \rightarrow \text{int}$,

 \vdash let $f = \text{fun } X \rightarrow \text{fun } Y \rightarrow X (X Y) \text{ in } f (\text{fun } Z \rightarrow Z+1) : \text{int} \rightarrow \text{int}$

Algorithm W, in caml

We take the raw abstract syntax of FUN, without type annotations.

Algorithm W, in caml

We extend simple types with a notion of type variable, and define a type scheme as a pair of a simple type typ and a set vars of universally quantified type variables.

```
type typ =
    TInt
   TBool
   TFun of typ * typ
    TVar of string
module VSet = Set.Make(String)
type schema = { vars: VSet.t; typ: typ }
let scheme of typ t = { vars= VSet.empty; typ: t }
A typing environment associate a type scheme to each variable of the
program.
```

module SMap = Map. Make(String)

type env = schema SMap.t

Algorithm W, in caml

We build a function type_inference: expr -> typ that computes a type for the expression given as parameter, trying to get a type that is as general as possible.

This function uses an auxiliary function new_var: unit -> string for creating new type variables.

```
let type_inference t =
  let new_var =
    let cpt = ref 0 in
    fun () -> incr cpt; Printf.sprintf "tvar_%i" !cpt
  in
```

Representing substitutions

- Type variables are associated to concrete types (or at least more precise types) when new constraints are discovered and analyzed.
- These associations are recorded in a hash table subst, that grows as the inference proceeds.

let subst = Hashtbl.create 32 in

It allows sharing and avoid the cost of substitution

- Thus, the types used during inference will contain type variables, some of which will have a definition in subst.
- To read such a type, we use auxiliary unfolding functions unfold and unfold_full, which take a type τ and replace its type variables by their definition in subst (for those that have one).

Unfolding functions

- unfold is a "shallow" replacement: it replaces only what is necessary to distinguish between the cases TInt, TBool, TFun or TVar.
- The function unfold_full performs a complete replacement

```
let rec unfold t = match t with
     TInt | TBool | TFun -> t
     TVar a ->
       if Hashtbl.mem subst a then
         unfold (Hashtbl.find subst a)
       else
  in
let rec unfold full t = match unfold t with
     TFun(t1, t2) -> TFun(unfold full t1, unfold full t2)
     t -> t
  in
```

Example using unfold

Check whether a type variable α appears in a type τ

```
let rec occur a t = match unfold t with
  | TInt | TBool -> false
  | TVar b -> a=b
  | TFun(t1, t2) -> occur a t1 || occur a t2
```

Core of the W algorithm

Consistency check is performed by an auxiliary function unify, which records on the fly the new associations between type variables and concrete types. Auxilliary functions:

- instantiate : schema -> typ replaces each universal variable by a fresh type variable.
- generalize: typ -> env -> schema, returns a type scheme in which type variables not free in the environment are generalized
- unify: typ -> typ -> unit, try to unify its two arguments, adding the constraints in the subst table, otherwise fails

Core of the W algorithm

```
let rec w e env = match e with
      Int -> TInt
    | Bop((Add | Sub | Mul), e1, e2) \rightarrow
       let t1 = w e1 env in
       let t2 = w e2 env in
       unify t1 Tlnt; unify t2 Tlnt;
       TInt
    \mid Bop(Lt, e1, e2) \rightarrow
       let t1 = w e1 env in
       let t2 = w e2 env in
       unify t1 TInt; unify t2 TInt;
       TBool
    | Bop(Eq, e1, e2) ->
       let t1 = w e1 env in
       let t2 = w e2 env in
       unify t1 t2;
       TBool
```

Core of the W algorithm (continued)

```
| If (c, e1, e2) ->
   let tc = w c env in
   let t1 = w e1 env in
   let t2 = w e2 env in
   unify to TBool;
   unify t1 t2;
   † 1
| Var x -> instantiate (SMap.find x env)
 Let(x, e1, e2) \rightarrow
   let t1 = w e1 env in
   let st1 = generalize t1 env in
   let env' = SMap.add x st1 env in
  w e2 env'
\mid Fun(x, e) \rightarrow
   let v = new var() in
   let env = SMap.add x (scheme of typ (TVar v)) env in
   let t = w e env in
  TFun(TVar v, t)
```

Core of the W algorithm (continued)

```
\mid App(e1, e2) \rightarrow
   let t1 = w e1 env in
   let t2 = w e2 env in
   let v = TVar (new var()) in
   unify t1 (TFun(t2, v));
   ٧
 Fix(f, e) \rightarrow
   let v = new var() in
   let env = SMap.add f (scheme of typ (TVar v)) env in
   let t = w e env in
   unify t (TVar v);
   t
```

Unification

```
let rec unify t1 t2 = match unfold t1, unfold t2 with
     TInt, TInt \rightarrow ()
     TBool, TBool -> ()
     TFun(t1, t1'), TFun(t2, t2')
                   -> unify t1 t2; unify t1' t2'
     TVar a, TVar b when a=b -> ()
     TVar a, t | t, TVar a ->
       if occur a t then
         failwith "unification error"
       else
         Hashtbl.add subst a t
    , -> failwith "unification, error"
```

Instantiation

```
let instantiate s =
  let renaming = VSet.fold
            (fun v r -> SMap.add v (TVar(new_var())) r)
            s.vars SMap.empty
in
  let rec rename t = match unfold t with
  | TVar a as t ->
            (try SMap.find a renaming with Not_found -> t)
  | (TInt | TBool as t) -> t
  | TFun(t1, t2) -> TFun(rename t1, rename t2)
  in rename s.typ
```

Generalization

```
let rec fyars t = match unfold t with
     TInt | TBool -> VSet.empty
     TFun(t1, t2) -> VSet.union (fvars t1) (fvars t2)
     TVar x -> VSet.singleton x
 in
 let rec schema fvars s =
   VSet. diff (fvars s.typ) s.vars
 in
 let generalize t env =
    let fvt = fvars t in
    let fvenv = SMap.fold
        (fun _ s vs -> VSet.union (schema_fvars s) vs)
        env
       VSet.empty
    in
    {vars = VSet.diff fvt fvenv; typ=t}
```

Summary

- A notion of simple types (base types + function types)
- Typing environments, typing judgments
- Inference rules caracterizing "well-typed" expressions (including consistency)
- Proof that well-typed expression can be evaluated "safely"
- Algorithms for type-checking and type inference