TD grammaires

Exercice 1 (Dérivation) Voici une grammaire pour les expressions arithmétiques :

$$\begin{array}{cccc} E & \rightarrow & M \, E' \\ E' & \rightarrow & + M \, E' \\ & \mid & \varepsilon \\ M & \rightarrow & A \, M' \\ M' & \rightarrow & ^* A \, M' \\ & \mid & \varepsilon \\ A & \rightarrow & (E) \\ & \mid & \mathsf{n} \end{array}$$

Donner un arbre de dérivation pour l'entrée 2 * (2 * 3 + 1) * 3.

Exercice 2 (N-uplets) On souhaite proposer une grammaire pour représenter des n-uplets de la forme

```
(s, s, s, s)
```

Plus précisément : un *n*-uplet est délimité par des parenthèses, et contient un certain nombre de chaînes de caractères séparées par des virgules. Les chaînes seront simplement réprésentées par un unique symbole s.

- 1. Donner une grammaire décrivant de tels *n*-uplets, avec la règle supplémentaire qu'un *n*-uplet doit contenir au moins un élément, et des dérivations pour les phrases (s) et (s, s, s).
- 2. Donner une variante de la grammaire précédente qui autorise le *n*-uplet vide, noté ().
- 3. Justifier qu'aucune de ces deux grammaires ne permet de dériver la phrase (s, s,).

Exercice 3 (Langage de Dyck) On s'intéresse aux phrases « bien parenthésées » que l'on peut construire avec les deux paires de parenthèses (/) et [/]. On veut donc accepter les phrases

```
(([()]))
(()]()
[[]()]
```

mais rejeter les phrases

```
(() // première parenthèse ( pas fermée
(()]) // première parenthèse ( fermée avec ]
[][]] // dernière parenthèse ] sans ouvrante associée
```

Donner une grammaire caractérisant ces phrases bien parenthésées, et des dérivations pour les trois phrases valides données en exemple ci-dessus.

Exercice 4 (Grammaires et associativité) Le cours proposait la grammaire G_0 suivante pour les expressions arithmétiques :

$$E \rightarrow E + M$$

$$\mid M$$

$$M \rightarrow M^* A$$

$$\mid A$$

$$A \rightarrow (E)$$

$$\mid n$$

En voici plusieurs variantes :

Grammaire G_1	Grammaire G_2	Grammaire G_3	Grammaire G_4
$E \rightarrow E + E$	$E \rightarrow M + M$	$E \rightarrow M + E$	$E \rightarrow E + M$
<i>M</i>	<i>M</i>	$\mid M$	$\mid M$
$M \rightarrow M^* M$	$M \rightarrow A * A$	$M \rightarrow A * M$	$M \rightarrow M^* A$
A	A	A	A * A
$A \rightarrow (E)$	$A \rightarrow (E)$	$A \rightarrow (E)$	n
n	n	n	$A \rightarrow (E+M)$
			l n

- 1. Deux de ces grammaires ne décrivent pas exactement le même langage que G_0 . Lesquelles? Quel langage décrivent-elles?
- 2. Donner tous les arbres de dérivation possibles pour l'entrée 2 * 3 * 7 pour *G*₀ et les deux autres grammaires décrivant les expressions arithmétiques. En quoi l'approche de ces trois grammaires est-elle différente?
- 3. Étendre ces grammaires pour qu'elles reconnaissent également les soustractions, si cela est possible.

Exercice 5 (Langage Inoxydable Simplement Parenthésé) Les règles suivantes définissent la grammaire du langage de programmation LISP.

On a trois symboles non terminaux E (une expression, symbole de départ), L (une liste), et A (un atome). Les symboles terminaux sont les parenthèses (et), un symbole sym désignant une séquence de caractères alphabétiques, un symbole num désignant un nombre, et quelques symboles d'opérateurs (on retient ici : + et *).

1. Donner une dérivation pour la phrase

```
(defun double (x) (* 2 x))
```

2. Justifier que la phrase

```
(let x 3
```

n'est pas dérivable.

- 3. Définir un type caml token pour les symboles terminaux de cette grammaire, et une fonction tokenize: string -> token list qui convertit une chaîne de caractères en une liste de symboles.
- 4. Définir une fonction validate: string -> bool qui prend en paramètre une chaîne de caractère et renvoie true si et seulement si cette chaîne représente un programme LISP bien formé. Indication: dans un premier temps, on recommande d'opter pour la stratégie « fonctionnelle », avec des fonctions récursives validate_expr et validate_instr qui prennent en entrée une liste de mots, et qui renvoient la liste des mots qui n'ont pas encore été consommés.
- 5. On propose le type suivant pour représenter les arbres syntaxes des expressions LISP.

```
type expr =
  | Num of int
  | Sym of string
  | Add
  | Mul
  | List of expr list
```

Définir une fonction parse: string -> expr qui prend en paramètre une chaîne de caractères supposée décrire une expression LISP et qui renvoie son arbre de syntaxe abstraite, ou échoue si l'expression source est mal formée. *Indication : dans un premier temps, on recommande comme ci-dessus la version fonctionnelle. Mais une fois que tout fonctionne, vous pouvez tenter une autre version!*