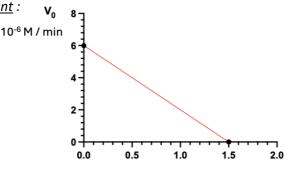
EPREUVES EN TEMPS LIMITE - PHBMR

du jeudi 04 septembre 2025

cotation 200 points - durée 2 h - 5 exercices

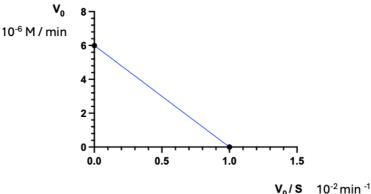

Dossier n° 1 - Enzymologie

/ 40 points

On considère une enzyme michaelienne E catalysant la transformation d'un substrat S en produit P. À l'aide d'une même solution de E et dans des conditions opératoires optimisées, on mesure les vitesses initiales V_0 obtenues pour différentes concentrations de S.

<u>Question 1</u>: Pour le couple E-S, exprimez V_0 en fonction de V_0 / S. Comment se nomme la représentation graphique correspondante ?

On obtient le graphe n°1 suivant :


Question 2 : Déterminez V_{max} et K_M

V₀/S 10⁻² min ⁻¹

Question 3 : Déterminez (en milliKatal/L) la concentration catalytique (CC) de la solution enzymatique utilisée :

- si on utilise une concentration saturante en substrat S
- si on utilise une concentration en substrat S = 1,2 mM

L'étude précédente (graphe n°1) est répétée après avoir ajouté au milieu réactionnel une molécule M à la concentration finale de 2.10^4 M. On obtient le graphe n°2 suivant :

10 11111

Question 3 : Comment se comporte la molécule M vis-à-vis de la réaction enzymatique impliquant E et S ? Expliquez.

Question 4 : Déterminez la constante de dissociation (Ki) de la molécule M.

<u>Question 5</u>: À partir de l'équation de Michaelis-Menten, exprimez 1/V en fonction de 1/S. Comment se nomme la représentation graphique correspondante ?

<u>Question 6</u>: En utilisant cette représentation (1/V en fonction de 1/S), schématisez sur le même graphe, les deux situations décrites précédemment (correspondant aux graphes n°1 et n°2).

Dossier n° 2 - Chimie analytique

/40 points

On souhaite préparer 100,0 mL d'une solution tampon acétate de pH 5,0 à partir d'acide acétique (CH₃COOH) et de son sel, l'acétate de sodium (CH₃COONa).

Données:

- pKa (CH₃COOH/CH₃COONa) = 4,76
- M (CH₃COOH) = $60,05 \text{ g} \cdot \text{mol}^{-1}$
- M (CH₃COONa) = $82,03 \text{ g} \cdot \text{mol}^{-1}$

Molarité de la solution tampon : 0,10 mol.L⁻¹

<u>Question 1</u>: Déterminer les concentrations de CH_3COOH et CH_3COON a (en mol.L⁻¹) à introduire pour obtenir 100,0 mL d'une solution tampon de molarité 0,1 mol.L⁻¹ à pH 5,00.

Question 2: Calculer les masses à peser (en mg) de CH₃COOH et de CH₃COONa pour préparer 100,0 mL de la solution tampon souhaitée.

On prélève 10,0 mL de la solution tampon précédente et on complète à 100,0 mL avec de l'eau distillée.

<u>Question 3</u>: Quelle est la concentration (en mol.L⁻¹) de chaque espèce de la solution tampon ? En déduire le pH de la solution tampon diluée.

Dans 100,0 mL de la solution tampon initiale (solution tampon 0,1mol. L^{-1}), on ajoute 1,00 mL d'une solution d'HCl 1,0 mol. L^{-1} .

Question 4 : Calculer les quantités de CH₃COOH et CH₃COONa en mmol. Calculer le pH de la solution obtenue.

<u>Question 5</u>: Comparer quantitativement la variation de pH obtenue avec la solution tampon avec celle qui aurait eu lieu si l'on avait ajouté la même quantité de HCl dans de l'eau pure.

Dossier n° 3 - Statistiques

/40 points

Dans le cadre d'une enquête sur la pollution de l'eau potable, on effectue différents contrôles de qualité. (Pour tous les tests choisir un risque égal à 5 %).

<u>Question 1</u>: La concentration en ions ammonium de l'eau potable dans le monde a une moyenne de 0,5 mg.L⁻¹ et une variance exacte de 0,01 mg². L⁻². À la suite d'une purification par un procédé chimique, un dosage des ions ammonium sur 10 prélèvements a donné pour moyenne m1 = 0,465 mg. L⁻¹ et pour écart-type s1 = 0,201 mg. L⁻¹.

Le résultat obtenu après traitement est-il inférieur en moyenne à la teneur en ions ammonium dans le monde ?

<u>Question 2</u>: On effectue 200 prélèvements dans trois zones différentes et on dénombre le nombre de prélèvements pollués par des bactéries coliformes. La présence de ces bactéries étant indicatrice de contamination pouvant causer des maladies intestinales.

Les résultats sont rassemblés dans le tableau ci-dessous :

	Zone 1	Zone 2	Zone 3
Présence de bactéries	6	16	10
Absence de bactéries	40	52	76

Les 3 zones diffèrent-elles quant à la proportion de prélèvements pollués par les bactéries ?

Question 3: On mesure la concentration (mg. L-1) en chlorures et en sulfates de 10 échantillons d'eau du robinet.

Les résultats des analyses sont donnés ci-dessous :

Échantillon	1	2	3	4	5	6	7	8	9	10
Chlorures	100	126	51	48	122	85	64	72	168	26
Sulfates	50	67	128	8ô	163	136	65	156	203	61

La teneur en sulfates est-elle linéairement corrélée à celle en chlorures ?

Table de la loi Normale

α	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,00	infini	2,576	2,326	2,170	2,054	1,960	1,881	1,812	1,751	1,695
0,10	1,645	1,598	1,555	1,514	1,476	1,440	1,405	1,372	1,341	1,311
0,20	1,282	1,254	1,227	1,200	1,175	1,150	1,126	1,103	1,080	1,058
0,30	1,036	1,015	0,994	0,974	0,954	0,935	0,915	0,896	0,878	0,860
0,40	0,842	0,824	0,806	0,789	0,772	0,755	0,739	0,722	0,706	0,690
0,50	0,674	0,659	0,643	0,628	0,613	0,598	0,583	0,568	0,553	0,539
0,60	0,524	0,510	0,496	0,482	0,468	0,454	0,440	0,426	0,412	0,399
0,70	0,385	0,372	0,358	0,345	0,332	0,319	0,305	0,292	0,279	0,266
0,80	0,253	0,240	0,228	0,215	0,202	0,189	0,176	0,164	0,151	0,138
0,90	0,126	0,113	0,100	0,088	0,075	0,063	0,050	0,038	0,025	0,013

La probabilité s'obtient par addition des nombres inscrits en marge <code>Exemple:pour</code> ϵ = 1,960, la probabilité est α = 0,00 + 0,05 = 0,05

Table pour les petites valeurs de probabilité

α	3
0,001000000	3,291
0,000100000	3,891
0,000010000	4,417
0,000001000	4,892
0,000000100	5,327
0,000000010	5,731
0,000000001	6,109

Tuble de l'écart-réduit (loi normale)

La table donne la probabilité α pour que l'écartréduit égale ou dépasse, en valeur absolue, une valeur donnée ϵ , c'est-à-dire la probabilité extérieure à l'intervalle (— ϵ , + ϵ).

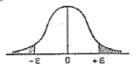
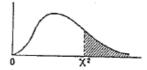



Table du χ^2

	orobabilit	téα							
ddl	0,90	0,50	0,30	0,20	0,10	0,05	0,02	0,01	0,001
1	0,016	0,455	1,074	1,642	2,706	3,841	5,412	6,635	10,827
2	0,211	1,386	2,408	3,219	4,605	5,991	7,824	9,210	13,815
3	0,584	2,366	3,665	4,642	6,251	7,815	9,837	11,345	16,266
4	1,064	3,357	4,878	5,989	7,779	9,488	11,668	13,277	18,466
5	1,610	4,351	6,064	7,289	9,236	11,070	13,388	15,086	20,515
6	2,204	5,348	7,231	8,558	10,645	12,592	15,033	16,812	22,457
7	2,833	6,346	8,383	9,803	12,017	14,067	16,622	18,475	24,321
8	3,490	7,344	9,524	11,030	13,362	15,507	18,168	20,090	26,124
9	4,168	8,343	10,656	12,242	14,684	16,919	19,679	21,666	27,877
10	4,865	9,342	11,781	13,442	15,987	18,307	21,161	23,209	29,588
11	5,578	10,341	12,899	14,631	17,275	19,675	22,618	24,725	31,264
12	6,304	11,340	14,011	15,812	18,549	21,026	24,054	26,217	32,909
13	7,041	12,340	15,119	16,985	19,812	22,362	25,471	27,688	34,527
14	7,790	13,339	16,222	18,151	21,064	23,685	26,873	29,141	36,124
15	8,547	14,339	17,322	19,311	22,307	24,996	28,259	30,578	37,698
16	9,312	15,338	18,418	20,465	23,542	26,296	29,633	32,000	39,252
17	10,085	16,338	19,511	21,615	24,769	27,587	30,995	33,409	40,791
18	10,865	17,338	20,601	22,760	25,989	28,869	32,346	34,805	42,312
19	11,651	18,338	21,689	23,900	27,204	30,144	33,687	36,191	43,819
20	12,443	19,337	22,775	25,038	28,412	31,410	35,020	37,566	45,314
21	13,240	20,337	23,858	26,171	29,615	32,671	36,343	38,932	46,796
22	14,041	21,337	24,939	27,301	30,813	33,924	37,659	40,289	48,268
23	14,848	22,337	26,018	28,429	32,007	35,172	38,968	41,638	49,728
24	15,659	23,337	27,096	29,553	33,196	36,415	40,270	42,980	51,179
25	16,473	24,337	28,172	30,675	34,382	37,652	41,566	44,314	52,619
26	17,292	25,336	29,246	31,795	35,563	38,885	42,856	45,642	54,051
27	18,114	26,336	30,319	32,912	36,741	40,113	44,140	46,963	55,475
28	18,939	27,336	31,391	34,027	37,916	41,337	45,419	48,278	56,892
29	19,768	28,336	32,461	35,139	39,087	42,557	46,693	49,588	58,301
30	20,599	29,336	33,530	36,250	40,256	43,773	47,962	50,892	59,702

Table de χ^2 (*).

La table donne la probabilité α pour que χ^2 égale ou dépasse une valeur donnée, en fonction du nombre de degrés de liberté (d.d.l.).

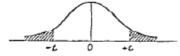
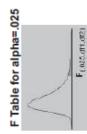


Table de Student (t)

p	robabilité	α							
ddl	0,90	0,50	0,30	0,20	0,10	0,05	0,02	0,01	0,001
1	0,158	1,000	1,963	3,078	6,314	12,706	31,821	63,656	636,578
2	0,142	0,816	1,386	1,886	2,920	4,303	6,965	9,925	31,600
3	0,137	0,765	1,250	1,638	2,353	3,182	4,541	5,841	12,924
4	0,134	0,741	1,190	1,533	2,132	2,776	3,747	4,604	8,610
5	0,132	0,727	1,156	1,476	2,015	2,571	3,365	4,032	6,869
6	0,131	0,718	1,134	1,440	1,943	2,447	3,143	3,707	5,959
7	0,130	0,711	1,119	1,415	1,895	2,365	2,998	3,499	5,408
8	0,130	0,706	1,108	1,397	1,860	2,306	2,896	3,355	5,041
9	0,129	0,703	1,100	1,383	1,833	2,262	2,821	3,250	4,781
10	0,129	0,700	1,093	1,372	1,812	2,228	2,764	3,169	4,587
11	0,129	0,697	1,088	1,363	1,796	2,201	2,718	3,106	4,437
12	0,128	0,695	1,083	1,356	1,782	2,179	2,681	3,055	4,318
13	0,128	0,694	1,079	1,350	1,771	2,160	2,650	3,012	4,221
14	0,128	0,692	1,076	1,345	1,761	2,145	2,624	2,977	4,140
15	0,128	0,691	1,074	1,341	1,753	2,131	2,602	2,947	4,073
16	0,128	0,690	1,071	1,337	1,746	2,120	2,583	2,921	4,015
17	0,128	0,689	1,069	1,333	1,740	2,110	2,567	2,898	3,965
18	0,127	0,688	1,067	1,330	1,734	2,101	2,552	2,878	3,922
19	0,127	0,688	1,066	1,328	1,729	2,093	2,539	2,861	3,883
20	0,127	0,687	1,064	1,325	1,725	2,086	2,528	2,845	3,850
21	0,127	0,686	1,063	1,323	1,721	2,080	2,518	2,831	3,819
22	0,127	0,686	1,061	1,321	1,717	2,074	2,508	2,819	3,792
23	0,127	0,685	1,060	1,319	1,714	2,069	2,500	2,807	3,768
24	0,127	0,685	1,059	1,318	1,711	2,064	2,492	2,797	3,745
25	0,127	0,684	1,058	1,316	1,708	2,060	2,485	2,787	3,725
26	0,127	0,684	1,058	1,315	1,706	2,056	2,479	2,779	3,707
27	0,127	0,684	1,057	1,314	1,703	2,052	2,473	2,771	3,689
28	0,127	0,683	1,056	1,313	1,701	2,048	2,467	2,763	3,674
29	0,127	0,683	1,055	1,311	1,699	2,045	2,462	2,756	3,660
30	0,127	0,683	1,055	1,310	1,697	2,042	2,457	2,750	3,646
infini	0,126	0,675	1,036	1,282	1,645	1,960	2,327	2,576	3,291

Table de t

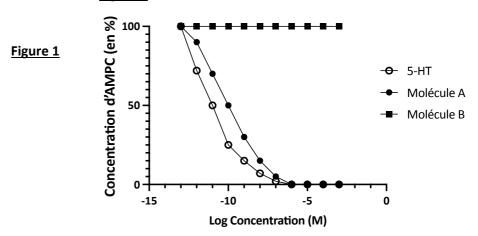
La table donne la probabilité « pour que 1 égale ou depasse, en vaieur absolue, une valeur donnée, en fonction du nombre de degrés de liberté (d.d.l.).



INF	254,314				4,365	3,669	l	2,928		2,538	2,405	2,296	2,206	2,131	2,066	2.010	l			1,843		1,812	1,783	1,757	1,733	1,711	1,691	1,672	1,654	1,638	1,622	1,509	1,389	A DEA
120	253,253	19,487	8,549	5,658	4,399	3,705	3,267	2,967	2,748	2,580	2,448	2,341	2,252	2,178	2,114	2.059	2.011	1,968	1,930	1,896		1,866	1,838	1,813	1,790	1,768	1,749	1,731	1,714	1,698	1,684	1,577	1,467	4 959
60	252,196	19,479	8,572	5,688	4,431	3,740	3,304	3,005	2,787	2,621	2,490	2,384	2,297	2,223	2,160	2,106	2.058	2,017	1,980	1,946		1,917	1,889	1,865	1,842	1,822	1,803	1,785	1,769	1,754	1,740	1,637	1,534	1000
40	251,143	19,471	8,594	5,717	4,464	3,774	3,340	3,043	2,826	2,661	2,531	2,426	2,339	2,266	2,204	2,151	2.104	2,063	2,026	1,994		1,965	1,938	1,914	1,892	1,872	1,853	1,836	1,820	1,806	1,792	1,693	1,594	,
30	250,095	19,462	8,617	5,746	4,496	3,808	3,376	3,079	2,864	2,700	2,571	2,466	2,380	2,308	2,247	2,194	2.148	2,107	2,071	2,039		2,010	1,984	1,961	1,939	1,919	1,901	1,884	1,869	1,854	1,841	1,744	1,649	,
24	249,052	19,454	8,639	5,774	4,527	3,842	3,411	3,115	2,901	2,737	2,609	2,506	2,420	2,349	2,288	2,235	2.190	2,150	2,114	2,083		2,054	2,028	2,005	1,984	1,964	1,946	1,930	1,915	1,901	1,887	1,793	1,700	ľ
20	248,013	19,446	8,660		4,558	3,874	ш	П	2,937	2,774	2,646	2,544	2,459	2,388	2,328	2276	ı	L	ш	2,124	Ш	- 1	П	П	2,027	2,008	1,990	1,974		1,945	П	1,839	1,748	
15	245,950	19,			4,619	3,938		3,218		2,845	2,719	2,617	Ц	2,463	2,403	L	L	2,269	Ш	Ш	П			Ш		2,089			Ш		2,015	1,925	L	l
12	243,906	19,413	8,745	5,912	4,678	4,000	3,575	3,284	3,073	2,913	2,788	2,687	2,604	2,534	2,475	2,425	2381	2,342	2,308	2,278		2,250	2,226	2,204	2,183	2,165	2,148	2,132	2,118	2,105	2,092	2,004	1,917	
df2/df1	+	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20		21	22	23	24	25	26	27	28	29	30	40	09	
10	241,882	19,396	8,786	5,964	4,735	4,060	3,637	3,347	3,137	2,978	2,854	2,753	2,671	2,602	2,544	2,494	2.450	2,412	2,378	2,348		2,321	2,297	2,275	2,255	2,237	2,220	2,204	2,190	2,177	2,165	2,077	1,993	İ
6		19,385	8,812	5,999	4,773	4,099	3,677	3,388	3,179	3,020	2,896	2,796	2,714	2,646	2,588	2.538	2.494	2,456	2,423	2,393		2,366	2,342	2,320	2,300	2,282	2,266	2,250	2,236	2,223	2,211	2,124	2,040	
8	238,883 2	19,371	8,845	6,041	4,818	4,147	3,726	3,438	3,230	3,072	2,948	2,849	2,767	2,699	2,641	2.591	2.548	2,510	2,477	2,447		2,421	2,397	2,375	2,355	2,337	2,321	2,305	2,291	2,278	2,266	2,180	2,097	
7	236,768	19,353	8,887	6,094	4,876	4,207	ш	П	Ш	3,136				2,764	2,707	2,657	L	2,577	2,544	П	П	- 1	П	2,442	Ш	2,405		2,373	Ш	2,346	2,334	2,249		
9	233,986	_	8,941		4,950	4,284	ш	ı	3,374				Ш	П	2,791	2.741	ı	2,661	ш	П	Ш	- 1	2,549	Ш	Ш	2,490	ш		Ш	Ш	2,421	2,336	ı	ı
2	3 230,162	_	9,014		5,050	4,387		ı	ш		3,204		ш	2,958		- 1	ı	3 2,773	ш	ш	ΙI	- 1		ш	3 2,621				2,558	ш	11	3 2,450	ı	ı
	2			6,388	- 1	7 4,534		ı	ш		3,357		ш			- 1	ı	0 2,928		ш	ΙI	- 1		ш	9 2,776		5 2,743		ı	ш	11	9 2,606	ı	ı
က	215,707	•			5,410	1	Ш	99 4,066	ш		3,587		Ш	ш	H	- 1	ı	3,160	ш	ш	Ш	- 1	П	Ш	3,009				10 2,947	ш	11		50 2,758	ı
2	48 199,500		Ш	09 6,944	- 1	87 5,143			ш	65 4,103		3,885	Ш	ш	43 3,682	- 1	ı	14 3,555	ш	ш	ш	- 1	П	Ш	60 3,403				3,340		ш		3,150	ı
-	161,448	18,513	10,128	7,709	9,6	5,90	5,591	5,318	5,117	9,4	4,844	4,747	4,667	4,6	4,543	4.4	4.451	4.4	4,381	4.3		4,325	4,301	4,2	4,260	4,242	4,225	4,210	4,196	4,183	4,171	4,085	4,001	
df2/df1	٠	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	44	18	19	20		51	22	23	24	22	26	27	28	29	30	40	9	

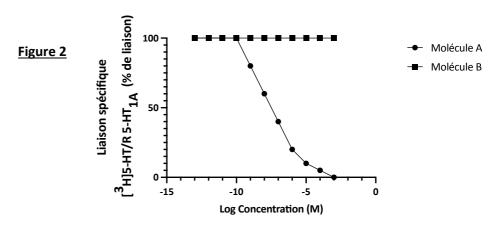
ı

F Table for alpha=.05


2,509 120 60 Inf 16 2 2 2 6,115 5,827 5,786 5,750 16 2 3 ន្តន 5 8 8 <u>분</u>

Dossier n° 4 - Pharmacologie

/40 points

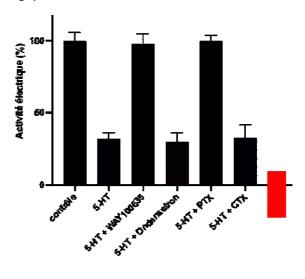

<u>Question 1</u>: Sans aucune autre étude au préalable, l'effet de 2 molécules (A et B) sur la production d'AMPc a été évalué sur des cellules CHO exprimant les récepteurs 5-HT_{1A} et comparé à l'effet du médiateur endogène, la sérotonine (5-HT). Les résultats sont présentés dans la **Figure 1**.

Question 1 - a): Indiquez le type d'expérience réalisée pour cette étude et le type de réponse obtenue.

<u>Question 1 - b)</u>: Après avoir défini et justifié la nature pharmacologique des molécules A, B comparez les à la 5-HT en utilisant tous les paramètres pharmacologiques adéquats. Vous donnerez pour chaque paramètre sa valeur ou une estimation de celle-ci et vous classerez ces molécules. Quelles expériences supplémentaires vous permettraient de confirmer vos hypothèses ?

Les résultats présentés dans la <u>Figure 2</u> ont été obtenus à la suite d'une autre expérience, réalisée sur ces cellules CHO exprimant les récepteurs 5-HT1A, en utilisant de la 5-HT tritiée ([³H]5-HT).

Question 1 - c : De quel type d'expérience s'agit-il ? Quelle propriété pharmacologique permet-elle de déterminer ?


<u>Question 1 - d</u>: Définissez le paramètre pharmacologique qui peut être déterminé à partir de cette expérience et donnez la valeur de ce paramètre pour A et B.

<u>Question 1 - e</u>: Par rapport à/aux hypothèse(s) émise(s) à la question Q1-b, que concluez-vous sur la nature de ces 2 molécules A et B?

La **Figure 3** ci-dessous représente l'activité électrique mesurée sur une culture de neurones dont l'expression des différents récepteurs sérotoninergiques n'a pas encore été identifiée. L'activité électrique est mesurée en condition contrôle et en présence des agents pharmacologiques suivants :

Figure 3

Agents	Propriété pharmacologique
Sérotonine (5- HT) à 10 ⁻⁶ M	Agoniste des différents récepteurs de la 5-HT
WAY-100635	Antagoniste des récepteurs 5-HT _{1A}
Ondansetron	Antagoniste des récepteurs 5-HT₃
PTX	Toxine pertussique
СТХ	Toxine cholérique
Α	Molécule A étudiée précédemment

<u>Question 1 - f</u>: Décrivez brièvement les effets des traitements <u>5-HT, 5HT+WAY100635 et 5HT+Odansetron</u> (vis-à-vis du contrôle) et apportez une conclusion.

<u>Question 1 - q</u>: Précisez les mécanismes d'action de la PTX et de la CTX, puis, décrivez les effets observés avec ces deux agents pharmacologiques dans la figure 3. Enoncez en une phrase la conclusion que vous tirez de ces données.

<u>Question 1 - h</u>: Représentez <u>sous forme d'un schéma</u> la voie de signalisation (du récepteur à l'effet cellulaire) impliquée dans les effets de la 5-HT que vous avez identifiée grâce aux questions 1d et 1g.

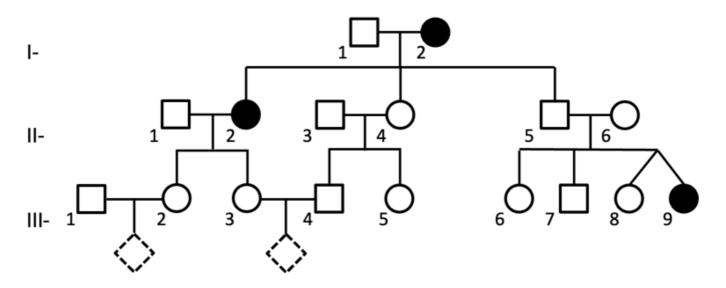
<u>Question 1 - i</u>: Quel serait l'effet du traitement des cellules de la figure 3 avec la molécule A à la concentration de 10^{-6} M: dessinez la barre d'histogramme attendue directement sur la figure 3. 1

A représenter directement sur le graphique

Question 2:

Une équipe de pharmacologues se propose de caractériser les composés UPS1, UPS2, UPS3, vis-à-vis de leurs propriétés sur les récepteurs β -adrénergiques de type 1 (β 1) et de type 2 (β 2). Des expériences ont permis de déterminer les valeurs de pA2 suivantes :

	UPS1	UPS2	UPS3
Récepteur β1	7,5	8,9	9,1
Récepteur β2	6,3	6,7	9,3


Question 2 - a : Définir le paramètre pA2.

<u>Question 2 - b</u>: L'équipe souhaite développer une molécule qui cible préférentiellement le cœur, où le Récepteur $\beta 1$ est exprimé. Quel candidat médicament choisiriez-vous ? Justifiez votre réponse ?

Dossier n° 5 - Génétique

/40 points

L'arbre généalogique suivant présente une famille atteinte d'une pathologie héréditaire rare. Cette pathologie affecte une nouvelle naissance sur 250000.

Après avoir soigneusement observé cet arbre répondez aux questions suivantes en justifiant toutes vos réponses.

Question 1 : S'agit-il d'une pathologie récessive ou dominante ?

Question 2 : S'agit-il d'une pathologie autosomique ou liée à l'X ?

Question 3: Donnez les génotypes des individus I-1, I-2, II-2 et II-5.

<u>Question 4</u>: Il est rappelé que cette pathologie touche une nouvelle naissance sur 250000. Quelle est la probabilité de III-1 d'être hétérozygote ?

Question 5 : Quelle est la probabilité de III-2 et III-3 d'être hétérozygotes ?

<u>Question 6</u>: Quelle est la probabilité que l'union III-1/III-2 conduise à la naissance d'un enfant atteint de la pathologie en question ?

Question 7 : Quelle est la probabilité de III-4 d'être hétérozygote ?

Question 8 : Quelle est la probabilité que l'union III-1/III-2 conduise à la naissance d'un enfant atteint de la pathologie en question ?

Question 9 : L'union entre III-3 et III-4 est-elle légale (au sens du code civil) en France ?