Colle 1 Chimie analytique

Chimie des solutions : solution tampon

Enoncé

On souhaite préparer 100,0 mL d'une solution tampon acétate de pH 5,0 à partir d'acide acétique (CH₃COOH) et de son sel, l'acétate de sodium (CH₃COONa).

Données:

pKa (CH_3COOH/CH_3COONa) = 4,76

 $M (CH_3COOH) = 60,05 g \cdot mol^{-1}$

 $M (CH_3COONa) = 82,03 g \cdot mol^{-1}$

Molarité de la solution tampon : 0,10 mol.L⁻¹

Question 1

Déterminer les concentrations de CH₃COOH et CH₃COONa (en mol.L⁻¹) à introduire pour obtenir 100,0 mL d'une solution tampon de molarité 0,1 mol.L⁻¹ à pH 5,00.

pH=pKa +log (IA ⁻ I/IAHI)	3 pts
--------------------------------------	-------

$$IA-I/IAHI = 10^{pH-pKa} = 10^{5,00-4,76} = 10^{0,24}$$
 3 pts

Et
$$IA^{-1} + IAHI = 0,1 \text{ mol.L}^{-1}$$

$$10^{0.24}IAHI + IAHI = 0.1 \text{ mol.L}^{-1}$$

$$IAHI = 0.0365 \text{ mol.L}^{-1}$$
 2 pts

$$IA^{-}I = 0.0635 \text{ mol.L}^{-1}$$
 2 pts

Rq: IA-I > IAHI car pH > pKa

Total 10 pts

Question 2

Calculer les masses à peser (en mg) de CH₃COOH et de CH₃COONa pour préparer 100,0 mL de la solution tampon souhaitée.

m = n.M = C.V.M

2 pts

Pour AH

 $m = 0.0365 \times 100 \times 60.05$

m = 219,2 mg

2 pts

Pour A-

 $m = 0.0635 \times 100 \times 82.03$

m = 520,9 mg

2 pts

Total 6 pts

On prélève 10,0 mL de la solution tampon précédente et on complète à 100,0 mL avec de l'eau distillée.

Question 3

Quelle est la concentration (en mol.L⁻¹) de chaque espèce de la solution tampon ? En déduire le pH de la solution tampon diluée

Dilution au 1/10ème	2 pts
---------------------	-------

$$IAHI = 0.00365 \text{ mol.L}^{-1}$$
 2 pts

$$IA^{-}I = 0,00635 \text{ mol.L}^{-1}$$
 2 pts

Rapport IA-I/IAHI inchangé

$$pH = 5.0$$
 2 pts

Total 8 pts

Dans 100,0 mL de la solution tampon initiale (solution tampon 0,1mol.L⁻¹), on ajoute 1,00 mL d'une solution d'HCl 1,0 mol.L⁻¹.

Question 4

Calculer les quantités de CH₃COOH et CH₃COONa en mmol.

Calculer le pH de la solution obtenue

	A- +	$H_30^+ \rightarrow$	$AH + H_20$	
T0	0,0635x100	1x1	0,0365x100	
	6,35 mmol	1 mmol	3,65 mmol	
Téq	5,35 mmol	0	4,65 mmol	3 + 3 pts

2 pts

Total 8 pts

Question 5

Comparer quantitativement la variation de pH obtenue avec la solution tampon avec celle qui aurait eu lieu si l'on avait ajouté la même quantité de HCl dans de l'eau pure.

Solution tampon = variation de pH = 5,00-4,82 = 0,18

2 pts

1 mL d'HCl 1 mol.L⁻¹ dans 100 mL

10⁻³ mol dans 0,101 L

Soit pH = $-\log (10^{-3} / 0,101)$

possible de faire l'approximation de l'absence de variation de volume = même résultat

pH = 2,00 2 pts

Variation de pH = 7,00-2,00 = 5,00 2 pts

Variation de pH beaucoup plus importante dans l'eau /tampon 2 pts

Total 8 pts