

## Mathématiques, évaluation 2

(calculatrice autorisée), 2 pages, 1h30.

Instructions de rédaction : Détailler suffisamment les arguments. Simplifier au maximum les fractions, écrire  $\frac{2}{3}$  au lieu de  $\frac{2}{4-1}$  ou  $\frac{4}{6}$ . Les 4 questions  $\spadesuit$  sont bonus. Répondre correctement à 10 ques-

tions vous assurera une note maximale.

## **Exercice 1**

- 1. Pour chaque entier  $N \in \mathbb{N}$ , calculer  $S_N = \sum_{n=0}^N \frac{3^n}{e^n}$ .
- 2. La série  $\sum_{n=0}^{\infty} \frac{3^n}{e^n}$  est-elle convergente?

**Exercice 2** Le but de cet exercice est de retrouver le résultat du cours  $\stackrel{\longleftarrow}{\leftarrow}$  1 sur  $\sum_{n>1} \frac{1}{n^2}$ .

- Comment s'appelle cette série? Quelle est sa nature?
- 2. Soit  $n \ge 2$ .
  - (a) Montrer que  $\frac{1}{n^2} \le \frac{1}{n(n-1)}$ .
  - (b) Vérifier que  $\frac{1}{n(n-1)} = \frac{1}{n-1} \frac{1}{n}$ .
- 3. Prouver que la suite  $(S_N)_{N\geq 1}$  définie par  $S_N = \sum_{n=1}^N \frac{1}{n^2}$  est majorée et en déduire le résultat du cours.

**Exercice 3** On considère la série  $\sum_{n \ge 2} a_n$  dans chacun des 6 cas énumérés ci-dessous.

- Indiquer si la série est à termes positifs;
- Déterminer sa nature (absolument convergente, convergente, grossièrement divergente, divergente). Justifier soigneusement.

$$1. \ \alpha_n = \frac{(\sin n)^2}{n^2}.$$

$$3. \ \alpha_n = \frac{n \cdot 2^n}{n! + 1}.$$

2. 
$$a_n = \frac{n^2 + 2n - 2}{2n^3 - 1}$$
.

4. 
$$a_n = \frac{1 + 2\cos(n)}{n^3 + \sin n}$$
.

5. (**4**) 
$$a_n = \frac{\sqrt{n+1} - \sqrt{n}}{n}$$
. 6. (**4**)  $a_n = \frac{(-1)^n \ln n}{n\sqrt{n}}$ .

**Problème** On considère les séries de la forme  $\sum_{k \in \mathbb{N}} \frac{a_k}{10^k}$  où  $(a_k)_{k \in \mathbb{N}}$  est une suite de nombres entiers, tous compris entre 0 et 9, c'est-à-dire que  $a_k \in \{0, 1, 2, \dots, 9\}$  pour tout  $k \in \mathbb{N}$ .

0. Démontrer qu'une telle série  $\sum_{k\in\mathbb{N}} \frac{a_k}{10^k}$  est convergente.

Les deux premières questions sont dédiées au calcul de la somme d'une telle série lorsque la suite  $(a_k)_{k\in\mathbb{N}}$  est donnée. Dans la dernière question, on vous demande de partir d'un nombre et de proposer la suite correspondante.

- 1. Calculer  $\sum_{k=0}^{+\infty} \frac{3}{10^k}.$
- 2. ( $\spadesuit$ ) On considère la suite  $(b_k)_{k\in\mathbb{N}}$  définie par  $b_k=2$  si k est pair et  $b_k=3$  si k est impair.
  - (a) On note :  $B_n = \sum_{k=0}^n \frac{b_k}{10^k}$ .

Expliquer pourquoi, si  $n \ge 2$ , on a :

$$B_n = \frac{2}{1} + \frac{3}{10} + \frac{1}{100} B_{n-2}.$$

- (b) En faisant tendre n vers l'infini, calculer la valeur de  $\sum_{k=0}^{+\infty} \frac{b_k}{10^k}$ .
- (c) À l'aide d'une calculatrice, donner une valeur approchée de la somme obtenue à la question précédente. Que remarquez-vous?
- 3. (�) Utiliser une calculatrice pour calculer les premières décimales du nombre  $\frac{20}{11}$ . Pour quelle suite  $(a_k)_{k\in\mathbb{N}}$  a-t-on  $\sum_{k=0}^{+\infty}\frac{a_k}{10^k}=\frac{20}{11}$ ? Prouver votre conjecture.