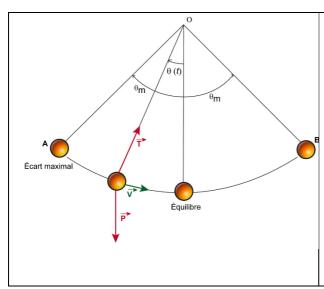


Préparation du TP2 Pesanteur et Incertitudes - corrigé

1-Oscillation d'un pendule



La période T[s] d'oscillation d'un pendule :

$$T = 2\pi \sqrt{\frac{L}{g}}$$

Où L [m] est la longueur du fil

Où g [m/s²] est la gravité terrestre

-Faites un schéma de l'expérience d'oscillation d'un pendule qui met en évidence L, g et les positions extrêmes d'oscillation A et B. Représentez en un point intermédiaire les 2 forces qui s'exercent sur la masse supposée ponctuelle m attachée au fil et la vitesse de la masse ainsi que la vitesse aux points A et B et au point intermédiaire.

-Vérifiez que la formule ci-dessus est homogène d'un point de vue des dimensions.

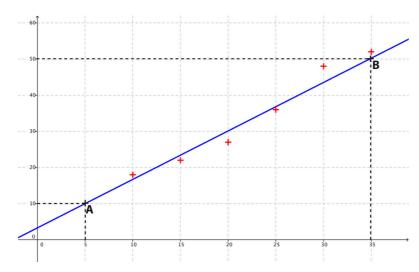
$$T = 2\pi \sqrt{\frac{L}{g}}$$
 \rightarrow $[T] = \sqrt{\frac{[L]}{[L.T^{-2}]}} = \sqrt{[T^2]} = [T]$

-Quelles sont les grandeurs que vous pouvez mesurer dans cette expérience ? Quelle grandeur pouvez-vous déduire ?

On peut mesurer la longueur du fil L et la période d'oscillation du pendule T. On peut ainsi en déduire la gravité terrestre g à la surface de la Terre.

2-Droite 'moyenne' ou droite de régression

-savoir tracer (graphiquement) la droite 'moyenne' qui passe au mieux par l'ensemble d'un groupe de points (ci-dessous).



Calcul du coefficient directeur d'une droite

Choisissez 2 points A et B sur la droite à partir desquels vous allez déterminer le coefficient directeur de la droite. Illustrez sur le schéma en positionnant

judicieusement A et B et leurs coordonnées (x_A, y_A) et (x_B, y_B). Calculez le coefficient directeur de la droite.

On choisit par exemple A (5 ; 10) et B (35 ; 50) qui sont des points dont les coordonnées sont faciles à lire sur le graphe.

La droite a pour équation y=a*x+b. On cherche à déterminer les coefficients a et b de la droite.

a est le coefficient directeur de la droite \rightarrow a=(y_B-y_A)/(x_B-x_A)=(50-10)/(35-5)=40/30=4/3

$$y_A=a*x_A+b \rightarrow b= y_A-a*x_A=10-4/3*5=10-20/3=(30-20)/3=10/3$$

On vérifie graphiquement b qui est l'ordonnée du point d'intersection entre la droite et l'axe des ordonnées.

On trouve y=4/3*x+10/3.

Si en ordonnées on représente une distance parcourue (en m) et en abscisses un temps (en s), quelle est l'unité du coefficient directeur ? Que représente-t-il ? Interprétez.

L'unité du coefficient directeur est dans ce cas le m/s. Il représente une vitesse. La vitesse est la dérivée du vecteur position en fonction du temps. La pente d'une droite est la représentation graphique de la dérivée de y en fonction de x.

4-Erreurs de mesures et incertitudes calculées

-revoir ces notions (fiche jointe).

On mesure un terrain de jeu d'une longueur L de 102 m et une largeur l de 75 m. L'erreur de mesure $\Delta L = \Delta l$ sur ces distances est estimée à 10 cm. Calculez le périmètre P et son incertitude ΔP , puis la surface du terrain et son incertitude ΔS (détaillez les calculs).

P=2*(L+I)=2*(102+75)=2*177=354 m

 $\Delta P=2*(\Delta L+\Delta I)=2*(0,1+0,1)=2*0,2=0,4 \text{ m}$

S=L*I=102*75=7650 m²

$$\frac{\Delta S}{|S|} = \frac{\Delta L}{|L|} + \frac{\Delta l}{|l|} \text{ soit } \frac{\Delta S}{|S|} = \frac{0,1}{|102|} + \frac{0,1}{|75|} = 0,098\% + 0,13\% = 0,23\%$$

D'où Δ S=0,23%*S=0,0023*7650=17,70 m²

Erreurs de mesures et erreurs calculées

1-Règles simples d'estimation des erreurs de mesures

Par exemple, si on mesure la distance séparant deux points A et B, on aura :

- -Une erreur de lecture liée à la règle graduée (précision de lecture)
- -Une erreur liée à la position des points A et B (position mal évaluée)
- -Une erreur liée à l'appréciation humaine (opérateur ayant des problèmes de vue ou peu attentif).

Il faut estimer ces erreurs de mesure et les ajouter pour obtenir l'erreur totale de mesures.

2-Règles simples de propagation des erreurs (ou des incertitudes)

On a mesuré plusieurs grandeurs x, y,.... avec leurs erreurs de mesures respectives δx , δy et on les utilise pour le calcul d'une grandeur q. On veut déterminer l'erreur δq du résultat final sur q. Pour cela, on utilise des règles de propagation des erreurs.

Somme et différence

incertitude absolue

$$\delta q = \delta x + \delta y + \delta z$$

Produit et quotient

incertitude relative

$$q = \frac{x * y}{z}$$

$$\frac{\delta q}{|q|} = \frac{\delta x}{|x|} + \frac{\delta y}{|y|} + \frac{\delta z}{|z|}$$

Multiplication par une constante (avec incertitude)

$$q=B*x$$
 où B est une constante avec une incertitude δB

$$\Rightarrow \frac{\delta q}{|q|} = \frac{\delta x}{|x|} + \frac{\delta B}{|B|}$$

Multiplication par un nombre exact (sans incertitude)

q=B*x où B est un nombre exact c'est à dire
$$\delta B=0$$
 et $\frac{\delta B}{|B|}=\frac{0}{|B|}=0$

$$\mathsf{Alors}: \frac{\delta q}{|q|} = \frac{\delta x}{|x|} + \frac{\delta B}{|B|} = \frac{\delta x}{|x|} + 0 = \frac{\delta x}{|x|} \, \mathsf{et}$$

$$\frac{\delta q}{|q|} = \frac{\delta x}{|x|} \text{ donne } \delta q = \frac{\delta x}{|x|} * |q| \text{ sachant que } q = B * x \text{ alors } \delta q = \frac{\delta x}{|x|} * B * |x| \text{ qu'on simplifie en } \delta q = \delta x * B$$

$$\delta q = B * \delta x$$

Propagation pas à pas

Tout calcul de propagation des erreurs se réduit à une série d'étapes dont chacune correspond à un seul type d'opérations. Attention : les incertitudes sur les sommes et les différences requièrent des incertitudes absolues (comme δx) tandis que celle sur les produits et les quotients utilisent des incertitudes relatives (comme $\delta x/x$).

Exemples

On veut calculer la demi-circonférence d'un cercle avec la formule $C=\pi^*r$. Quelle est l'incertitude sur C sachant que r=20 cm et l'incertitude sur r est $\delta r=1$ mm et que π est estimé dans un premier cas sans calculatrice à 3.14 et dans un second cas avec la calculatrice avec 10 chiffres après la virgule.

Cas 1 :
$$\pi$$
 =3.14±0.01 $\Rightarrow \frac{\delta C}{C} = \frac{\delta \pi}{|\pi|} + \frac{\delta r}{|r|} = \frac{0.01}{3.14} + \frac{1}{20} \approx 0.03 + 0.05 = 0.08$

Cas 2:
$$\pi$$
 =3.1415926535±1.10⁻¹⁰ $\Rightarrow \frac{\delta C}{C} = \frac{\delta \pi}{|\pi|} + \frac{\delta r}{|r|} = \frac{1.10^{-10}}{3.1415926535} + \frac{1}{20} \approx 0.05$

Université Paris-Saclay - L1-PCST