Programming Languages, semantics, compilers

Christine Paulin

Christine.Paulin@universite-paris-saclay.fr

Département Informatique, Faculté des Sciences d'Orsay, Université Paris-Saclay

M1 Informatique - MPRI

2025-26

Semantics and interpretation of FUN

Semantics and interpretation of FUN

Organisation

- Course created by Thibaut Balabonski (I am using his material)
- Ecampus site :

```
https:
//ecampus.paris-saclay.fr/enrol/index.php?id=185060
(shared with the compiler's course of L3, quest access COMPIL-25)
```

- Evaluation : project + oral examination
- Exceptionnaly: next week course will be on monday 15th afternoon (13:30 room C207)

Contents

This course explores programming languages, focusing on two main topics :

- their <u>semantics</u>, that is the formal description of the meaning of programs;
- their <u>compilation</u>, that is the decomposition of high-level source language programs into simpler instructions whose execution can be performed by a computer.

We will define a functional programming language with a rich type system, and build an optimizing compiler and an execution environment for this language.

Plan

Semantics of a functional language

- Semantics and interpretation
- Types and safety

Assembly

- The target : assembly code
- Optimisations

Implementation of a functional language

- Compilation
- Automatic memory management

Semantics and interpretation of FUN

- 1
- Semantics and interpretation of FUN
- Abstract and concrete syntax
- Inductive structures
- An interpret for FUN
- Natural semantics
- Small step operational semantics
- Equivalence between small step and big step

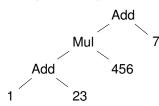
The FUN Language

```
let rec fact = fun n ->
   if n = 0 then
    1
   else
    n * fact (n-1)
in
fact 6
```

Concrete syntax versus abstract syntax

- Concrete syntax of a programming language :
 - a sequence of characters,
 - what the programmer is allowed to write,
 - what is understood as a legitimate program by the computer

- Abstract syntax :
 - · a hierarchical representation of the input,
 - · keeps only what is meaningful for computation



Syntactic sugar

- A construction available in the concrete syntax but not in the abstract syntax tree
- Examples :
 - x += 1 translates to x = x + 1
 - t[i] translates to *(t+i)
 - let f x = e translates to let f = fun x -> e

Semantics and interpretation of FUN

- 1 5
 - Semantics and interpretation of FUN
 - Abstract and concrete syntax
 - Inductive structures
 - An interpret for FUN
 - Natural semantics
 - Small step operational semantics
 - Equivalence between small step and big step

Inductive structures

- A mathematical way to describe tree structures and reason about them
- Given: a signature, a set of "constructors" each one comes with an arity
- Derived :
 - set of objects E build using a finite number of constructors
 - a way to define a function $f \in E \rightarrow A$ by case and using recursion
 - a awy to prove properties $\forall x \in E, P(x)$ by induction

Definition

We define a set of inductive objects with:

- some base objects,
- a set of <u>constructors</u>, that can combine already built objects to define new objects.

We then consider the set of all objects that can be built using the two previous points, only a finite number of times.

- Each construtor comes with an <u>arity</u>: the number of expected elements
- Base objects have an arity 0
- The <u>signature</u> of a set of inductive objects is the set comprising its base objects and its constructors.

Example: lists

Linked lists can be seen as a set of inductive objects defined by :

- a unique base object : the empty list, written [],
- a constructor, which builds a new list e : ℓ by adding a new element e at the head of a list ℓ.

A small subtlety:

- From the theoretical point of view, we might consider we have a set of unary constructors e : ., one for each element e
- Alternatively, we might consider we have only one constructor which expects 2 arguments, but only the second one is recursive

Example: arithmetic expressions.

We define a minimal set of arithmetic expression A with:

- the integer constants as base objects,
 - 0 1 2 3 ...
- some <u>binary</u> constructors, each combining <u>two</u> already built expressions, such as addition or multiplication.

On can lighten the handling of such expression using mathematical notations such as n, $e_1 \oplus e_2$ or $e_1 \otimes e_2$.

Defining functions on a set of inductive objects

Each object of a set *E* of inductive objects can be built using only the base objects and the constructors (finitely).

A function f applicable to the elements of E can thus be defined in a very succinct way:

- for each base element e, give f(e),
- for each *n*-ary constructor c, describe $f(c(e_1, \ldots, e_n))$ using the subelements e_i and their images $f(e_i)$ for each $e_i \in E$.

This define a unique image for each element of *E*.

Examples

```
 \left\{ \begin{array}{rcl} \text{nbCst}(n) &=& 1 \\ \text{nbCst}(\textit{e}_1 \oplus \textit{e}_2) &=& \text{nbCst}(\textit{e}_1) + \text{nbCst}(\textit{e}_2) \\ \text{nbCst}(\textit{e}_1 \otimes \textit{e}_2) &=& \text{nbCst}(\textit{e}_1) + \text{nbCst}(\textit{e}_2) \end{array} \right. 
 \left\{ \begin{array}{rcl} nb\mathsf{Op}(n) &=& 0\\ nb\mathsf{Op}(e_1\oplus e_2) &=& 1+nb\mathsf{Op}(e_1)+nb\mathsf{Op}(e_2)\\ nb\mathsf{Op}(e_1\otimes e_2) &=& 1+nb\mathsf{Op}(e_1)+nb\mathsf{Op}(e_2) \end{array} \right.
 \left\{ \begin{array}{rcl} \operatorname{eval}(n) & = & n \\ \operatorname{eval}(e_1 \oplus e_2) & = & \operatorname{eval}(e_1) + \operatorname{eval}(e_2) \\ \operatorname{eval}(e_1 \otimes e_2) & = & \operatorname{eval}(e_1) \times \operatorname{eval}(e_2) \end{array} \right.
```

Inductive objects in Ocaml

Expressions are defined similarly, using three constructors.

```
type expr =
    | Cst of int
    | Add of expr * expr
    | Mul of expr * expr

(1 \oplus 2) \oplus (3 \otimes 4) can be defined in caml by :
    Add(Add(Cst 1, Cst 2), Mul(Cst 3, Cst 4))
```

Functions

```
let rec nb cst = function
   Cst n -> 1
  \mid Add(e1, e2) -> nb cst e1 + nb cst e2
   Mul(e1, e2) \rightarrow nb cst e1 + nb cst e2
let rec eval = function
   Cst n -> n
  \mid Add(e1, e2) \rightarrow eval e1 + eval e2
   Mul(e1, e2) \rightarrow eval e1 * eval e2
let rec nb op = function
   Cst
                                -> 0
  | Add(e1, e2) | Mul(e1, e2) \rightarrow nb op e1 + nb op e2
```

Reasoning by structural induction

Proving that a given property E is valid for all elements in E reduces to:

- oproving that P(e) is valid for each base element e,
- 2 proving, for each *n*-ary constructor c, and given n elements $e_1, ..., e_n$ that the property P is valid for the combined element $c(e_1, \ldots, e_n)$ provided all $e_i \in E$ satisfy $P(e_i)$. In other words, for any constructor and any elements,

$$P(e_{i_1}) \wedge \ldots \wedge P(e_{i_k}) \implies P(c(e_1, \ldots, e_n)).$$

Thus, we ensure that it is not possible to build an element e that does not satisfy the target property P.

In the second point hypotheses $P(e_i)$ to $P(e_i)$ that can be used for justifying $P(c(e_1,\ldots,e_n))$ are called induction hypotheses.

Examples of induction principles

- Proving that a property P is valid for all lists reduces to :
 - proving that it is valid for the empty list [],
 - of for any list ℓ and any element e, proving that if P is valid for ℓ (induction hypothesis), then it is still valid for $e : \ell$.
- Proving that a property P is valid for all arithmetic expressions reduces to:
 - oproving that it is valid for all integer constants,
 - of or any expressions e₁ and e₂, proving that if P is valid for e₁ and e₂ (induction hypotheses), then it is still valid for e₁ ⊕ e₂,
 - of for any expressions e_1 and e_2 , proving that if P is valid for e_1 and e_2 (induction hypotheses), then it is still valid for $e_1 \otimes e_2$.

Example of proof by induction

P(e) is the property nbCst(e) = nbOp(e) + 1,

- Case of a constant (base case): for any constant n we have nbCst(n) = 1 and nbOp(n) = 0. Then the property P is satisfied by the term n.
- Case of an addition (inductive case) : let e_1 and e_2 be two expressions satisfying the property P. Then

```
\begin{array}{ll} \text{nbCst}(e_1 \oplus e_2) \\ = & \text{nbCst}(e_1) + \text{nbCst}(e_2) \\ = & (\text{nbOp}(e_1) + 1) + (\text{nbOp}(e_2) + 1) \\ = & (1 + \text{nbOp}(e_1) + \text{nbOp}(e_2)) + 1 \\ = & \text{nbOp}(e_1 \oplus e_2) + 1 \end{array} \qquad \begin{array}{ll} \text{by induction hypotheses} \\ \text{(reorder)} \\ \text{by definition of nbOp} \end{array}
```

Thus, the property P is still valid for the term $Add(e_1, e_2) = e_1 \oplus e_2$.

 Case of a multiplication (inductive case): similar to the case of an addition.

Thus, using structural induction we proved that for any arithmetic expression e, we have nbCst(e) = nbOp(e) + 1.

Semantics and interpretation of FUN

- 1
- Semantics and interpretation of FUN
- Abstract and concrete syntax
- Inductive structures
- An interpret for FUN
- Natural semantics
- Small step operational semantics
- Equivalence between small step and big step

Abstract syntax

A unique type of expressions

```
type bop = Add | Sub | Mul | Lt | Eq (* / ... *)
type expr =
  (* arithmetic *)
   Int of int
  Bop of bop * expr * expr
  (* variables *)
  | Var of string
  Let of string * expr * expr
  (* conditional *)
  | If of expr * expr * expr
  (* functions *)
  | Fun of string * expr
  | App of expr * expr
  (* recursion *)
  | Fix of string * expr
```

Abstract syntax : example

```
The expression let x = 41 in x+1 of FUN is represented in caml by Let("x", Int 41, Bop(Add, Var "x", Int 1)). The constructor Fix describes a recursive definition. let rec f x = e1 in e2 will be represented in caml by Let("f", Fix("f", Fun("x", e1)), e2). Note that the identifier "f" of the function appears twice here.
```

Variables

- A name for a value that has been computed before
 - define what a value is
 - keep track of valid names
 - keep track of the link between names and values (association table)

Implementation (arithmetical part, without functions)

```
type value =
    | VInt of int
    | VBool of bool
```

Association tables implemented usind balanced trees

```
module Env = Map.Make(String)
type env = value Env.t
```

Available objects from the module Env

- Env.empty for an empty table
- Env.find for fetching the value associated to a given key
- Env.add for adding or updating an association.

Eval function

```
let rec eval (e:expr) (env:env) : value = match e with
    Int n -> VInt n
    Bop(op, e1, e2) \rightarrow
     begin match op, eval e1 env, eval e2 env with
         Add, VInt n1, VInt n2 \rightarrow VInt (n1 + n2)
         Sub, VInt n1, VInt n2 \rightarrow VInt (n1 \rightarrow n2)
          Mul, VInt n1, VInt n2 \rightarrow VInt (n1 * n2)
          Lt, VInt n1, VInt n2 \rightarrow VBool (n1 < n2)
         Eq. v1, v2 \rightarrow VBool (v1 = v2)
          -> failwith "unauthorized operation"
     end
    If(c, e1, e2) \rightarrow
     begin match eval c env with
       VBool b -> if b then eval e1 env
                    else eval e2 env
     -> failwith "unauthorized operation"
     end
```

Eval function (variables)

```
| Var x -> Env.find x env
| Let(x, e1, e2) ->
| let v1 = eval e1 env in
| let env' = Env.add x v1 env in
| eval e2 env'
let eval top (e: expr): value = eval e Env.empty
```

Functions and functional closures

Functions are ordinary values, which can be passed to other functions as parameters, or returned as results.

```
let plus n =
  let f x = x + n in
f
```

- a function plus defines and returns a local function f.
- The definition of f uses a variable n which is external to f (it is called a free variable).
- the variable n is a parameter of the function plus.
- Two calls plus 2 and plus 3 define two differents functions. Both correspond to the code **fun** $x \rightarrow x + n$, however we have n = 2 in the former case, and n = 3 in the latter.
- a function-value is a function together with an environment providing at least the values of all the external variables used in the function
- We call this function/environment pair a <u>functional closure</u>.

Implementation

```
type value = ...
| VClos of string * expr * env
```

The value corresponding to the function fun $x \rightarrow e$ defined in the environment ρ is represented by VClos ("x", e, ρ).

```
let rec eval e env = match e with
...
| Fun(x, e) -> VClos(x, e, env)
| App(e1, e2) ->
| let x, e, env' = match eval e1 env with
| VClos(x, e, env') -> x, e, env'
| _ -> failwith "unauthorized_operation"
in
| let v2 = eval e2 env in
| eval e (Env.add x v2 env')
```

Recursion

- A recursive function f, like any ordinary function, evaluates to a functional closure $c = \text{VClos}(x, e, \rho)$.
- We need the environment ρ of the closure c to contain c itself (as the value of f)
- we would like

eval
$$(Fix(f, Fun(x, e)))$$
 env

to produce a value $\ensuremath{_{\mathrm{V}}}$ satisfying the recursive equation

$$v = VClos(x, e, Env.add f v env)$$

Not allowed in ocaml

 Solution : add a specific value for recursive functions with all needed information

Implementing recursive functions

```
type value =
...
| VFix of expr * string * value * env
```

Given an expression e, an identifier f, and an environment ρ , the recursive value $v = \text{VFix}(e, f, v, \rho)$ is to be understood has the result of evaluating e in the environment $\text{Env.add} f v \rho$.

Evaluating recursive functions

- the evaluation rule for Fix produces a recursive value VFix
- an auxiliary function force: value -> value "opens" a recursive value during function application

Evaluation of fixpoints

```
let rec eval e env = match e with
  \mid Fix(f, Fun(x, e)) \rightarrow
     let rec v = VFix(Fun(x, e), f, v, env) in
  | Fix _ -> failwith "unauthorized_operation"
  \mid App(e1, e2) \rightarrow
     let x, e, env' = match force (eval e1 env) with
        | VClos(x, e, env') \rightarrow x, e, env'
        -> failwith "unauthorized_operation"
       in let v2 = eval e2 env
       in eval e (Env.add x v2 env')
and force v = match v with
 VFix(Fun(x,e), f, v, env) \rightarrow VClos(x,e,Env.add f v env)
 VClos(_,_,_) -> v
 -> failwith "unauthorized_operation"
```

Semantics and interpretation of FUN

- Semantics and interpretation of FUN
 - Abstract and concrete syntax
 - Inductive structures
 - An interpret for FUN
 - Natural semantics
 - Small step operational semantics
 - Equivalence between small step and big step

Natural semantics

- The evaluation function defined earlier in caml gives a meaning based on caml
- Semantics of programming languages is not always precisely defined
 The Java programming language guarantees that the operands of operators appear to be evaluated in a specific order, namely, from left to right. It is recommended that code do not rely crucially on this specification.
- We want a <u>formal semantics</u>, a mathematical characterization of the computation described by a program.
- This more rigorous setting allows us to <u>reason</u> on the execution of programs.

Equational semantics

```
\begin{array}{rcl} \operatorname{eval}(n,\rho) & = & n \\ \operatorname{eval}(e_1 \oplus e_2,\rho) & = & \operatorname{eval}(e_1,\rho) + \operatorname{eval}(e_2,\rho) \\ \operatorname{eval}(x,\rho) & = & \rho(x) \\ \operatorname{eval}(\operatorname{let} \ x = e_1 \ \operatorname{in} \ e_2,\rho) & = & \operatorname{eval}(e_2,\rho \cup \{x \mapsto \operatorname{eval}(e_1,\rho)\}) \\ \operatorname{eval}(\operatorname{fun} \ x \to e,\rho) & = & \operatorname{Clos}(x,e,\rho) \\ \operatorname{eval}(e_1 \ e_2,\rho) & = & \operatorname{eval}(e,\rho' \cup \{x \mapsto \operatorname{eval}(e_2,\rho)\}) \\ \operatorname{if} \operatorname{eval}(e_1,\rho) & = & \operatorname{Clos}(x,e,\rho') \end{array}
```

Avoiding the environment

- Evaluate only closed values
- Substitution : e[x := e'] denotes the replacement of each occurrence of the variable x in the expression e by the other expression e'

$$n[x := e'] = n$$

$$(e_1 + e_2)[x := e'] = e_1[x := e'] + e_2[x := e']$$

$$y[x := e'] = \begin{cases} e' & \text{if } x = y \\ y & \text{otherwise} \end{cases}$$

$$(\text{let } y = e_1 \text{ in } e_2)[x := e'] = \begin{cases} \text{let } y = e_1[x := e'] \text{ in } e_2 \\ \text{let } y = e_1[x := e'] \text{ in } e_2[x := e'] \end{cases}$$

$$(\text{fun } y -> e)[x := e'] = \begin{cases} \text{fun } y -> e & \text{if } x = y \\ \text{fun } y -> e[x := e'] & \text{otherwise} \end{cases}$$

$$(e_1 e_2)[x := e'] = e_1[x := e'] e_2[x := e']$$

For the rules let and fun in the case $x \neq y$ are only applicable when $y \notin \text{fv}(e')$.

y being a bound (mute) variable, it can be replaced by a fresh name if needed.

Evaluation of closed expressions

```
\begin{array}{rcl} \operatorname{eval}(n) & = & n \\ \operatorname{eval}(e_1 \oplus e_2) & = & \operatorname{eval}(e_1) + \operatorname{eval}(e_2) \\ \operatorname{eval}(x) & = & \operatorname{indefini} \\ \operatorname{eval}(\operatorname{let} x = e_1 \ \operatorname{in} \ e_2) & = & \operatorname{eval}(e_2[x := \operatorname{eval}(e_1)]) \\ \operatorname{eval}(\operatorname{fun} x \to e) & = & \operatorname{fun} x \to e \\ \operatorname{eval}(e_1 \ e_2) & = & \operatorname{eval}(e[x := \operatorname{eval}(e_2)]) \\ & & & \operatorname{if} \operatorname{eval}(e_1) = \operatorname{fun} x \to e \end{array}
```

Natural semantics

- Also called big step semantics
- Use a relation between expressions and values (e

 v) instead of a function in order to define the semantics
- Use inference rules to define the relation
 - a proof of a concrete case $e \implies v$ is represented as a tree
 - associated induction principle to use an hypothesis $e \implies v$
- the set of values : integer numbers, and functions.

Rules

$$\frac{n \Rightarrow n}{n \Rightarrow n}$$

$$\frac{e_1 \Rightarrow n_1 \quad e_2 \Rightarrow n_2}{e_1 \oplus e_2 \Rightarrow n_1 + n_2}$$

$$\frac{e_1 \Rightarrow v_1 \quad e_2[x := v_1] \Rightarrow v}{\text{let } x = e_1 \text{ in } e_2 \Rightarrow v}$$

$$\frac{e_1 \Rightarrow v_1 \quad e_2[x := v_1] \Rightarrow v}{\text{fun } x \rightarrow e \Rightarrow \text{fun } x \rightarrow e}$$

$$\frac{e_1 \Rightarrow \text{fun } x \rightarrow e \Rightarrow \text{fun } x \rightarrow e}{e_1 \Rightarrow \text{fun } x \rightarrow e \Rightarrow \text{fun } x \rightarrow e}$$

Example

$$\frac{\exists \operatorname{fun} x \rightarrow x \oplus x \implies \operatorname{fun} x \rightarrow x \oplus x}{\exists \operatorname{fun} x \rightarrow x \oplus x \implies \operatorname{fun} x \rightarrow x \oplus x \text{ in } f(20 \oplus 1) \implies 42}$$

$$\frac{1}{\underbrace{\operatorname{fun} x -> x \oplus x \implies \operatorname{fun} x -> x \oplus x}} \underbrace{\begin{array}{c} 20 \Longrightarrow 20 & \overline{1} \Longrightarrow 1 \\ 20 \oplus 1 \Longrightarrow 21 \end{array}} \underbrace{\begin{array}{c} 21 \Longrightarrow 21 & \overline{21} \Longrightarrow 21 \\ 21 \oplus 21 \Longrightarrow 42 \end{array}}$$

(ロ) (部) (注) (注) 注 り(で)

Call by value versus call by name

- The argument of a function is evaluated before executing the body
- Alternatively

$$\frac{e_1 \implies \text{fun } x \rightarrow e \qquad e[x := e_2] \implies v}{e_1 e_2 \implies v}$$

$$\frac{e_2[x := e_1] \implies v}{\text{let } x = e_1 \text{ in } e_2 \implies v}$$

Example

$$\frac{20 \Rightarrow 20 \qquad 1 \Rightarrow 1}{20 \oplus 1 \Rightarrow 21} \qquad \frac{20 \Rightarrow 20 \qquad 1 \Rightarrow 1}{20 \oplus 1 \Rightarrow 21}$$

$$\frac{f \text{tun } x \rightarrow x \oplus x \Rightarrow f \text{tun } x \rightarrow x \oplus x}{(f \text{tun } x \rightarrow x \oplus x)(20 \oplus 1) \oplus (20 \oplus 1) \Rightarrow 42}$$

$$\frac{(f \text{tun } x \rightarrow x \oplus x)(20 \oplus 1) \Rightarrow 42}{(f \text{tun } x \rightarrow x \oplus x)(20 \oplus 1) \Rightarrow 42}$$

$$\frac{(f \text{tun } x \rightarrow x \oplus x)(20 \oplus 1) \Rightarrow 42}{(f \text{tun } x \rightarrow x \oplus x)(20 \oplus 1) \Rightarrow 42}$$

Reasoning on semantics

- Prove that an hypothesis $e \implies v$ implies a property P(e, v)
- One case by inference rule

Example

Let us consider the call by name semantics for FUN

$$\frac{e_1 \implies n_1 \quad e_2 \implies n_2}{e_1 \oplus e_2 \implies n_1 + n_2} \quad \frac{e_2[x := e_1] \implies v}{\text{let } x = e_1 \text{ in } e_2 \implies v}$$

$$\frac{e_1 \implies \text{fun } x \rightarrow e \qquad e[x := e_2] \implies v}{e_1 e_2 \implies v}$$

fun $X \rightarrow e \implies \text{fun } X \rightarrow e$

and prove that if $e \implies v$, then v is value such that $fv(v) \subseteq fv(e)$, by induction on the derivation of $e \implies v$.

Proof

- Case $n \implies n$: immediate
- Case fun $x \rightarrow e \implies$ fun $x \rightarrow e$: immediate as well.
- Case $e_1 \oplus e_2 \implies n_1 + n_2$ with $e_1 \implies n_1$ and $e_2 \implies n_2$. By definition $n_1 + n_2$ is an integer value. Moreover $\text{fv}(n_1 + n_2) = \emptyset \subseteq \text{fv}(e_1 \oplus e_2)$.
- Case let $x = e_1$ in $e_2 \implies v$ with $e_2[x := e_1] \implies v$. induction hypothesis : $fv(v) \subseteq fv(e_2[x := e_1])$ (and v is a value). Lemma :

$$\mathsf{fv}(e[x := e']) \subseteq (\mathsf{fv}(e) \setminus \{x\}) \cup \mathsf{fv}(e')$$

Using the lemma, we get $fv(v) \subseteq (fv(e_2) \setminus \{x\}) \cup fv(e_1)$. We have

$$fv(\text{let } x = e_1 \text{ in } e_2) = fv(e_1) \cup (fv(e_2) \setminus x)$$

Then $fv(v) \subseteq fv(\text{let } x = e_1 \text{ in } e_2)$.

• Case $e_1 \ e_2 \implies v$ with $e_1 \implies \text{fun } x \rightarrow e$ and $e[x := e_2] \implies v$. induction hypotheses v is a value, and $\text{fv}(\text{fun } x \rightarrow e) \subseteq \text{fv}(e_1)$ and $\text{fv}(v) \subseteq \text{fv}(e[x := e_2])$.

$$fv(v) \subseteq fv(e[x := e_2])$$

$$= (fv(e) \setminus \{x\}) \cup fv(e_2)$$

$$= fv(fun x -> e) \cup fv(e_2)$$

Semantics and interpretation of FUN

- Semantics and interpretation of FUN
 - Abstract and concrete syntax
 - Inductive structures
 - An interpret for FUN
 - Natural semantics
 - Small step operational semantics
 - Equivalence between small step and big step

Small step operational semantics

- Natural semantics speaks only about computations that succeed.
- <u>Small step semantics</u>, or <u>reduction semantics</u>, provides finer information by decomposing the evaluation $e \implies v$ in a sequence of computation steps $e \rightarrow e_1 \rightarrow e_2 \rightarrow \ldots \rightarrow v$.
- Three possible behaviors
 - a computation reaches a result (value) :

$$e
ightarrow e_1
ightarrow e_2
ightarrow \ldots
ightarrow v$$

a computation which, stumbles on a failure state :

$$e
ightarrow e_1
ightarrow e_2
ightarrow \ldots
ightarrow e_n$$

where e_n is not a value, but cannot be evaluated further,

• a computation that never ends :

$$\textbf{\textit{e}} \rightarrow \textbf{\textit{e}}_1 \rightarrow \textbf{\textit{e}}_2 \rightarrow \dots$$

Computation rules

- a binary relation $e \rightarrow e'$ called <u>reduction relation</u>, describing a single step of computation.
- defined by a set of inference rules
- elementary computation rules, giving base cases
- inference rules that allow the application of a computation rule in a subexpression.

Rules

Basic computational rules

$$\overline{(\text{fun } x \rightarrow e) \ v \rightarrow e[x := v]}$$

let
$$x = v$$
 in $e \rightarrow e[x := v]$
$$\frac{n_1 + n_2 = n}{n_1 \oplus n_2 \rightarrow n}$$

Dealing with subexpressions

$$\frac{e_1 \rightarrow e_1'}{e_1 \oplus e_2 \rightarrow e_1' \oplus e_2} \qquad \frac{e_2 \rightarrow e_2'}{e_1 \oplus e_2 \rightarrow e_1 \oplus e_2'}$$

Forcing the order of evaluation

$$\frac{\textit{e}_2 \rightarrow \textit{e}_2'}{\textit{v}_1 \oplus \textit{e}_2 \rightarrow \textit{v}_1 \oplus \textit{e}_2'}$$

Rules

Local variables and application

$$\frac{e_1 \rightarrow e_1'}{\text{let } \textit{X} = \textit{e}_1 \text{ in } \textit{e}_2 \rightarrow \text{let } \textit{X} = \textit{e}_1' \text{ in } \textit{e}_2}$$

$$\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2} \quad \frac{e_2 \rightarrow e_2'}{\textit{v}_1 \ e_2 \rightarrow \textit{v}_1 \ e_2'}$$

Vocabulary

- ullet e
 ightarrow e' when 1 computation step leads from e to e', and
- $e \rightarrow^* e'$ when a computation leads from e to e' using 0, 1 or more steps (this is called a computation sequence or a reduction sequence).
- An <u>irreducible</u> expression is an expression e from which no reduction step can take place, that is such that there is no expression e' such that $e \rightarrow e'$.
 - let f = fun x -> x + x in f (20 + 1)
 - let f = fun x -> fun y -> x + y in 1 + f 2

Semantics and interpretation of FUN

- Semantics and interpretation of FUN
 - Abstract and concrete syntax
 - Inductive structures
 - An interpret for FUN
 - Natural semantics
 - Small step operational semantics
 - Equivalence between small step and big step

Equivalence between small step and big step

$$e \implies v$$
 if and only if $e \rightarrow^* v$

- $e \implies v$ implies $e \rightarrow^* v$: by induction on the derivation of $e \implies v$
- $e \rightarrow^* v$ implies $e \implies v$ (with v a value) : by induction on the length of the reduction sequence $e \rightarrow^* v$.
 - Lemma : if $e \to e'$ and $e' \Longrightarrow v$ then $e \Longrightarrow v$. Proof by induction on the derivation of $e \to e'$.

(see full proof in the course notes)

Rules: big step

Rules: small step

$$\frac{e_1 \rightarrow e_1'}{e_1 \oplus e_2 \rightarrow e_1' \oplus e_2} \qquad \frac{e_2 \rightarrow e_2'}{v_1 \oplus e_2 \rightarrow v_1 \oplus e_2'} \qquad \frac{n_1 + n_2 = n}{n_1 \oplus n_2 \rightarrow n}$$

$$\frac{e_1 \rightarrow e_1'}{\text{let } x = e_1 \text{ in } e_2 \rightarrow \text{let } x = e_1' \text{ in } e_2}$$

let
$$x = v$$
 in $e \rightarrow e[x := v]$

$$\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2}$$

$$rac{oldsymbol{e}_2
ightarrow oldsymbol{e}_2'}{oldsymbol{v}_1 \,\, oldsymbol{e}_2
ightarrow oldsymbol{v}_1 \,\, oldsymbol{e}_2'}$$

$$\frac{e_1 \rightarrow e_1'}{e_1 \ e_2 \rightarrow e_1' \ e_2} \qquad \frac{e_2 \rightarrow e_2'}{v_1 \ e_2 \rightarrow v_1 \ e_2'} \qquad \qquad \underbrace{\left(\text{fun } \textit{x} \rightarrow \textit{e}\right) \textit{v} \rightarrow \textit{e}[\textit{x} := \textit{v}]}$$

Exercises

- formalize the semantics of if and fix, both in big step and in small step style;
- extend FUN with lazy operators such as || and &&, which do not evaluate their second operand when the first one is sufficent for the final result

Summary

- Abstract syntax
- Inductive sets (definition of functions, proofs by induction)
- Semantics of a functional language (dealing with (recursive) closure
- Mathematical definition of semantics
 - using inference rules
 - big step/small step semantics
 - example of proofs on semantics