Programming Languages, semantics, compilers

Christine Paulin
Christine.Paulin@universite-paris-saclay.fr

Département Informatique, Faculté des Sciences d’Orsay, Université Paris-Saclay

M1 Informatique - MPRI

2025-26

C. Paulin (Université Paris-Saclay) Compilation 2025-26 1/63

Semantics and interpretation of FUN

o Semantics and interpretation of FUN

C. Paulin (Université Paris-Saclay) Compilation 2025-26 6/63

@ Course created by Thibaut Balabonski (I am using his material)

@ Ecampus site :
https:
//ecampus.paris—saclay.fr/enrol/index.php?id=185060
(shared with the compiler’s course of L3, guest access COMPIL-25)

@ Evaluation : project + oral examination

@ Exceptionnaly : next week course will be on monday 15th afternoon
(13 :30 room C207)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 7/63

https://ecampus.paris-saclay.fr/enrol/index.php?id=185060
https://ecampus.paris-saclay.fr/enrol/index.php?id=185060

This course explores programming languages, focusing on two main topics :

@ their , that is the formal description of the meaning of
programs;

@ their , that is the decomposition of high-level source language
programs into simpler instructions whose execution can be performed by
a computer.

We will define a functional programming language with a rich type system, and
build an optimizing compiler and an execution environment for this language.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 8/63

Semantics of a functional language
@ Semantics and interpretation
@ Types and safety
Assembly
@ The target : assembly code
@ Optimisations
Implementation of a functional language
@ Compilation
@ Automatic memory management

C. Paulin (Université Paris-Saclay) Compilation 2025-26 9/63

Semantics and interpretation of FUN

a Semantics and interpretation of FUN
@ Abstract and concrete syntax

C. Paulin (Université Paris-Saclay) Compilation 2025-26 10/63

The FUN Language

let rec fact = fun n —>
if n =0 then
1
else
n = fact (n-1)
in
fact 6

C. Paulin (Université Paris-Saclay) Compilation 2025-26 11/63

Concrete syntax versus abstract syntax

@ Concrete syntax of a programming language :
@ a sequence of characters,
o what the programmer is allowed to write,
e what is understood as a legitimate program by the computer

> (1+23)+456+7
> (1 + 23) = 456 + 7
> (1+23) «456 +7

@ Abstract syntax :

@ a hierarchical representation of the input,
o keeps only what is meaningful for computation

Add
- AN
Mul 7
e AN
Add 456
e AN
1 23

C. Paulin (Université Paris-Saclay) Compilation 2025-26 12/63

Syntactic sugar

@ A construction available in the concrete syntax but not in the abstract
syntax tree
@ Examples:

e X +=1translatestox = x + 1
o t[i] translates to (t+i)
o let f x =etranslatesto let f =funx —> ¢

C. Paulin (Université Paris-Saclay) Compilation 2025-26 13/63

Semantics and interpretation of FUN

a Semantics and interpretation of FUN

@ Inductive structures

C. Paulin (Université Paris-Saclay) Compilation 2025-26 14/63

Inductive structures

@ A mathematical way to describe tree structures and reason about them
@ Given : a signature, a set of “constructors” each one comes with an arity
@ Derived :

o set of objects E build using a finite number of constructors
e a way to define a function f € E — A by case and using recursion
@ a awy to prove properties Vx € E, P(x) by induction

C. Paulin (Université Paris-Saclay) Compilation

We define a set of inductive objects with :
@ some ,

@ asetof , that can combine already built objects to define new
objects.

We then consider the set of all objects that can be built using the two previous
points, only a finite number of times.

@ Each construtor comes with an : the number of expected elements
@ Base objects have an arity 0
@ The of a set of inductive objects is the set comprising its base

objects and its constructors.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 16/63

Example : lists

Linked lists can be seen as a set of inductive objects defined by :
@ a unique base object : the empty list, written [],

@ a constructor, which builds a new list e : ¢ by adding a new element e at
the head of a list ¢.

A small subtlety :

@ From the theoretical point of view, we might consider we have a set of
unary constructors e : ., one for each element e

@ Alternatively, we might consider we have only one constructor which
expects 2 arguments, but only the second one is recursive

C. Paulin (Université Paris-Saclay) Compilation 2025-26 17/63

Example : arithmetic expressions.

We define a minimal set of arithmetic expression A with :
@ the integer constants as base objects,

0 1 2 3

@ some constructors, each combining two already built expressions,
such as addition or multiplication.

Add Mul
VRN 7N

€1 e e €eo

On can lighten the handling of such expression using mathematical notations
suchasn, e; ® e ore; ® és.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 18/63

Defining functions on a set of inductive objects

Each object of a set E of inductive objects can be built using only the base
objects and the constructors (finitely).

A function f applicable to the elements of E can thus be defined in a very
succinct way :

@ for each base element e, give f(e),

@ for each n-ary constructor ¢, describe f(c(ey, ..., ey)) using the
subelements e; and their images f(e;) for each e; € E.

This define a unique image for each element of E.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 19/63

]
nbCst(ey) + nbCst(ez)

nbCst(er @ e2)
nbCst(ey) + nbCst(e)

nbCst(n)
nbCst(e; ® e2)

0
1 4+ nbOp(ey) + nbOp(ey)

nbOp(er @ &)
1+ nbOp(e1) + nbOp(ez)

nbOp(n)
{ nbOp(er ® &)

3

eval(n)
{ eval(e; @ e2) eval(ey) + eval(ep)
eval(ey) x eval(eo)

eval(e; ® e2)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 20/63

Inductive objects in Ocaml

type 'a list =
| {1

| (::) of ’a » ’a list
Expressions are defined similarly, using three constructors.

type expr =
| Cst of int
| Add of expr = expr
| Mul of expr = expr

(1®2) ® (83 ®4) can be defined in caml by :
Add(Add(Cst 1, Cst 2), Mul(Cst 3, Cst 4))

C. Paulin (Université Paris-Saclay) Compilation 2025-26 21/63

Functions

let rec nb_cst = function
| Cst n - 1
| Add(el, e2) —> nb_cst el + nb_cst e2
| Mul(el, e2) —> nb_cst el + nb_cst e2

let rec eval = function
| Cst n ->n
| Add(el, e2) —> eval el + eval e2
| Mul(el, e2) —> eval el =« eval e2

let rec nb_op = function

| Cst _ -> 0
| Add(el, e2) | Mul(el, e2) —> nb_op el + nb_op e2

C. Paulin (Université Paris-Saclay) Compilation 2025-26 22/63

Reasoning by structural induction

Proving that a given property E is valid for all elements in E reduces to :
@ proving that P(e) is valid for each base element e,

@ proving, for each n-ary constructor ¢, and given n elements ey, ..., e, that
the property P is valid for the combined element c(ey, ..., e,) provided all
e; € E satisfy P(e)).
In other words, for any constructor and any elements,
P(ei)A...AP(e,) = P(c(ey,...,en)).
Thus, we ensure that it is not possible to build an element e that does not
satisfy the target property P.

In the second point hypotheses P(e;,) to P(e;,) that can be used for justifying
P(c(et,...,en)) are called

C. Paulin (Université Paris-Saclay) Compilation

Examples of induction principles

@ Proving that a property P is valid for all lists reduces to :
@ proving that it is valid for the empty list [],
@ for any list £ and any element e, proving that if P is valid for ¢ (induction
hypothesis), then it is still valid for e : ¢.

@ Proving that a property P is valid for all arithmetic expressions reduces
to:
@ proving that it is valid for all integer constants,
@ for any expressions e; and e, proving that if P is valid for e; and e;
(induction hypotheses), then it is still valid for e; @ e»,
@ for any expressions e; and e, proving that if P is valid for e; and e,
(induction hypotheses), then it is still valid for 1 ® e».

C. Paulin (Université Paris-Saclay) Compilation 2025-26 24/63

Example of proof by induction

P(e) is the property nbCst(e) = nbOp(e) + 1,
@ Case of a constant (base case) : for any constant n we have nbCst(n) = 1
and nbOp(n) = 0. Then the property P is satisfied by the term n.

@ Case of an addition (inductive case) : let e; and e» be two expressions
satisfying the property P. Then

nbCst(e; & e2)

= nbCst(ey) + nbCst(ey) by definition of nbCst
= (nbOp(e1)+ 1)+ (nbOp(e2) + 1) by induction hypotheses
= (1+nbOp(er)+ nbOp(ez)) + 1 (reorder)

= nbOp(e1 @) + 1 by definition of nbOp

Thus, the property P is still valid for the term Add(ey, €2) = e1 @ e.

@ Case of a multiplication (inductive case) : similar to the case of an
addition.
Thus, using structural induction we proved that for any arithmetic expression
e, we have nbCst(e) = nbOp(e) + 1.

C. Paulin (Université Paris-Saclay) Compilation

Semantics and interpretation of FUN

a Semantics and interpretation of FUN

@ An interpret for FUN

C. Paulin (Université Paris-Saclay) Compilation 2025-26 26/63

Abstract syntax

A unique type of expressions

type bop = Add | Sub | Mul | Lt | Eq (* | ... *)
type expr =

(= arithmetic =)

| Int of int

| Bop of bop = expr = expr
(= variables =)

| Var of string

| Let of string = expr » expr
(= conditional =)

| If of expr = expr = expr
(= functions =)

| Fun of string = expr

| App of expr = expr

(= recursion =)

| Fix of string » expr

C. Paulin (Université Paris-Saclay) Compilation 2025-26 27/63

Abstract syntax : example

The expression let x = 41 in x+1 of FUN is represented in caml by
Let("x", Int 41, Bop(Add, Var "x", Int 1)).

The constructor Fix describes a recursive definition.

let rec f x = el in e2 will be represented in caml by

Let("f", Fix("f", Fun("x", e1)), e2).

Note that the identifier "f" of the function appears twice here.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 28/63

@ A name for a value that has been computed before

o define what a value is
@ keep track of valid names
o keep track of the link between names and values (association table)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 29/63

Implementation (arithmetical part, without functions)

type value =
| Vint of int
| VBool of bool

Association tables implemented usind balanced trees

module Env = Map.Make(String)
type env = value Env.t
Available objects from the module Env
@ Env.empty for an empty table
@ Env.find for fetching the value associated to a given key
@ Env.add for adding or updating an association.

Compilation

C. Paulin (Université Paris-Saclay)

Eval function

let rec eval (e:expr) (env:env)
| Int n —> ViInt n
| Bop(op, el, e2) —>
begin match op, eval el env,
| Add, VInt n1, ViInt n2 —
| Sub, Vint n1, Vint n2 —>
| Mul, Vint n1, Vint n2 —>
| Lt, VInt n1, Vint n2 —
| Eq, vi, v2 —>
| _

value = match e with

eval e2 env with
Vint (n1 + n2)
Vint (n1 - n2)
Vint (n1 * n2)
VBool (n1 < n2)
VBool (vl = v2)

failwith "unauthorized_operation”

| If(c, el, e2) —
begin match eval ¢ env with

| VBool b —> if b then eval el env

else eval e2 env

| _ —> failwith "unauthorized_operation”

end

C. Paulin (Université Paris-Saclay) Compilation

2025-26 31/63

Eval function (variables)

| Var x —> Env.find x env

| Let(x, el, e2) —>
let vi = eval el env in
let env’ = Env.add x vi1 env in
eval e2 env’

let eval_top (e: expr): value = eval e Env.empty

C. Paulin (Université Paris-Saclay) Compilation 2025-26 32/63

Functions and functional closures

Functions are ordinary values, which can be passed to other functions as
parameters, or returned as results.

let plus n =
let f X = x + n in
f

@ a function plus defines and returns a local function f.

@ The definition of f uses a variable n which is external to f (it is called a
).

@ the variable n is a parameter of the function plus.

@ Two calls plus 2 and plus 3 define two differents functions. Both
correspond to the code fun x —> x + n, however we have n = 2 in the
former case, and n = 3 in the latter.

@ a function-value is a function together with an environment providing at
least the values of all the external variables used in the function

@ We call this function/environment pair a

C. Paulin (Université Paris-Saclay) Compilation

Implementation

type value =
| VClos of string = expr = env

The value corresponding to the function fun x -> e defined in the
environment p is represented by vclos ("x", e, p).

let rec eval e env = match e with

| Fun(x, e) —> VClos(x, e, env)
| App(el, e2) —
let x, e, env’ = match eval el env with
| VClos(x, e, env’) -> x, e, env’
| _ —> failwith "unauthorized_operation”
in
let v2 = eval e2 env in
eval e (Env.add x v2 env’)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 34/63

Recursion

@ A recursive function f, like any ordinary function, evaluates to a functional
closure ¢ = vClos(x, e, p).

@ We need the environment p of the closure c to contain c itself (as the
value of f)

@ we would like
eval (Fix(f, Fun(x, e))) env
to produce a value v satisfying the recursive equation
v = VClos(x, e, Env.add f v env)

Not allowed in ocaml

@ Solution : add a specific value for recursive functions with all needed
information

C. Paulin (Université Paris-Saclay) Compilation 2025-26 35/63

Implementing recursive functions

type value =

| VFix of expr = string = value » env

Given an expression e, an identifier f, and an environment p, the recursive
value v = vrix (e, f, v, p) istobe understood has the result of evaluating
e in the environment Env.add f v p.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 36/63

Evaluating recursive functions

@ the evaluation rule for rix produces a recursive value vrix

@ an auxiliary function force: value —-> value “Opens” a recursive value
during function application

C. Paulin (Université Paris-Saclay) Compilation 2025-26 37/63

Evaluation of fixpoints

let rec eval e env = match e with

| Fix(f, Fun(x, e)) —>

let rec v = VFix(Fun(x, e), f, v, env) in
v
| Fix _ —> failwith "unauthorized_operation”

| App(el, e2) —>

let x, e, env’ = match force (eval el env) with
| VClos(x, e, env’) —> x, e, env’

| _ —> failwith "unauthorized_operation”
in let v2 = eval e2 env

in eval e (Env.add x v2 env’)

and force v = match v with
|

VFix (Fun(x,e), f, v, env) -> VClos(x,e,Env.add f v env)
| VClos(_,_,_) —> v
| _ —> failwith "unauthorized_operation”

C. Paulin (Université Paris-Saclay) Compilation

2025-26 38/63

Semantics and interpretation of FUN

a Semantics and interpretation of FUN

@ Natural semantics

C. Paulin (Université Paris-Saclay) Compilation 2025-26 39/63

Natural semantics

@ The evaluation function defined earlier in caml gives a meaning based on
caml

@ Semantics of programming languages is not always precisely defined
The Java programming language guarantees that the
operands of operators appear to be evaluated in a specific
order, namely, from left to right. It is recommended that
code do not rely crucially on this specification.

@ We want a , @ mathematical characterization of the

computation described by a program.

@ This more rigorous setting allows us to reason on the execution of
programs.

C. Paulin (Université Paris-Saclay) Compilation

Equational semantics

eval(in,p) = n
eval(e; ® e2,p) = eval(ey,p) +eval(es, p)
eval(x,p) = p(x)
eval(let x = e in ep,p) = eval(e,pU{x— eval(es,p)})
eval(fun x —> e,p) = Clos(x,e,p)
eval(ey e2,p) = eval(e,p' U{x — eval(ezp)})

if eval(eq, p) = Clos(x, e, p')

C. Paulin (Université Paris-Saclay) Compilation 2025-26 41/63

Avoiding the environment

@ Evaluate only closed values

° : e[x := €] denotes the replacement of each occurrence of
the variable x in the expression e by the other expression €

nx:=¢€] = n
(e1 + e)[x:=¢€] e[x =€] + ex:=¢€]
o e ifx=y
ylx:=¢] y otherwise
let y = e[x:=¢€] in &
let y = e[x:=¢€] in ex =

(let ¥y = €1 in e)[x:=¢€] =

- — el = fun y > e fx=y
(fun y —> e)[X = e] = { fun y —> e[x:= €] otherwis
(e1 &)lx:=¢€] = eix:=¢]efx:=¢]

For the rules 1et and fun inthe case x # y are only applicable when
y ¢ tv(e).

y being a bound (mute) variable, it can be replaced by a fresh name if
needed.

C. Paulin (Université Paris-Saclay) Compilation 2025-26 42/63

Evaluation of closed expressions

eval(n n
eval(e; & e eval(eyr) + eval(ez)
eval(x indéfini

eval(ex[x := eval(ey)])
fun X > e

eval(e[x := eval(e2)])

if eval(e;) = fun x —> e

eval(fun x —> e
eval(e; e

)
)
)
eval(let x = ey in &)
)
)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 43/63

Natural semantics

@ Also called

@ Use a relation between expressions and values (6 = v) instead of a
function in order to define the semantics

@ Use inference rules to define the relation

@ a proof of a concrete case e = v is represented as a tree
@ associated induction principle to use an hypothesis e — v

@ the set of values : integer numbers, and functions.

v = n
| fun x —> e

C. Paulin (Université Paris-Saclay) Compilation 2025-26 44/63

Rules

n—n

e — Iy € — INo
e1de — N +no

ey — W elx =vi] = v
let X = € in €& = V

fun X > € = fun X -> €

ey — fun x -> € e — W ex=w] = v
e 6 — V

C. Paulin (Université Paris-Saclay) Compilation 2025-26 45/63

funX->X @ X =—> funx->Xx @ X (fun x > x®x) (200 1) = 42
let f = fun x -> x®x in f(20® 1) = 42

20 = 20 1 =1 21 = 21 21 = 21
funX->X X = funx-—>x P x 2001 = 21 21921 = 42
(fun x > xPx) (200 1) = 42

C. Paulin (Université Paris-Saclay) Compilation 2025-26 46/63

Call by value versus call by name

@ The argument of a function is evaluated before executing the body
@ Alternatively

e = fun X —> € ex:=6| = Vv
e1 6 — V

ex:=e] = v
let X = €1 in € = VvV

C. Paulin (Université Paris-Saclay) Compilation 2025-26 47/63

20 = 20 1 =1 20 = 20 1 =1
2001 = 21 2001 = 21
funX->x @ X = funX->X D X 0 1)p (200 1) = 42

(fun x > x@®x) (200 1) = 42
let f = fun X —> x®x in f(2001) = 42

C. Paulin (Université Paris-Saclay) Compilation 2025-26 48/63

Reasoning on semantics

@ Prove that an hypothesis e =— v implies a property P(e, v)
@ One case by inference rule

C. Paulin (Université Paris-Saclay) Compilation 2025-26 49/63

Let us consider the call by name semantics for FUN

e — M € — No ez[x:: 61] — Vv
n —=— n e1dbe = n+no let X = € 1in €& — V

fun X > € = fun X -> €

e = fun x -> e ex:=e] = v
€1 6 — V

and prove that if e = v, then v is value such that fv(v) C fv(e), by induction
on the derivation of e = v.

C. Paulin (Université Paris-Saclay) Compilation

@ Case n — n:immediate
@ Case fun x —> € — fun x —> e:immediate as well.
@ Case es e — ny + no with ey =— ny and &2 = n,. By definition
ny + np is an integer value. Moreover fv(ny + n2) = 0 C fv(e; @ e2).
@ Case let x = e in @ = vwithex:=¢e] = v.
induction hypothesis : fv(v) C fv(ez[x := e4]) (and v is a value).
Lemma :
fv(e[x := €']) C (fv(e) \ {x }) ufv(€)
Using the lemma, we get fv(v) C (fv(ex) \ { x }) Ufv(er).

We have
fv(let x = €1 in &) =fv(er) U (fv(ex) \ X)
Then fv(v) Cfv(let x = €1 in ey).
@ Case ey & — vwithey = fun x —> eande[x .= &] = V.
induction hypotheses v is a value, and fv(fun x -> e) C fv(ey) and
fv(v) C fv(e[x := ey]).

fv(v) C fv(e[x :=es))

(fv(e) \ {x}) Utv(ez)

fv(fun x -> e)Ufv(en)

C. Paulin (Université Paris-Saclay) Compilation

Semantics and interpretation of FUN

a Semantics and interpretation of FUN

@ Small step operational semantics

C. Paulin (Université Paris-Saclay) Compilation 2025-26 52/63

Small step operational semantics

@ Natural semantics speaks only about computations that succeed.

o , or , provides finer information
by decomposing the evaluation e —> v in a sequence of computation
stepse— e > — ... > V.

@ Three possible behaviors
@ a computation reaches a result (value) :

e—>e 6 —...oV
@ a computation which, stumbles on a failure state :
e—e —6e—...— €

where e, is not a value, but cannot be evaluated further,
@ a computation that never ends :

e— e —€e— ...

C. Paulin (Université Paris-Saclay) Compilation 2025-26 53/63

Computation rules

@ a binary relation e — €’ called , describing a single step
of computation.

@ defined by a set of inference rules
@ elementary computation rules, giving base cases

@ inference rules that allow the application of a computation rule in a
subexpression.

C. Paulin (Université Paris-Saclay) Compilation

Rules

Basic computational rules

(fun x —> e)v = e[x :=V]

let X = VvV in e— ¢g[x = V]
N +n=n
n&én—n
Dealing with subexpressions
er — € € — €
e1be e De e D6 e de

Forcing the order of evaluation

€ — €
Vi e — vy D ey

C. Paulin (Université Paris-Saclay) Compilation 2025-26 55/63

Rules

Local variables and application

el — €
let X = € in & — let X = €| in &

e — € € — €
ey e — eq €eo Vi € — V4 6/2

C. Paulin (Université Paris-Saclay) Compilation 2025-26 56/63

Vocabulary

@ e — € when 1 computation step leads from e to €/, and

@ e —* € when a computation leads from e to € using 0, 1 or more steps
(this is called a computation or a reduction sequence).

@ An expression is an expression e from which no reduction
step can take place, that is such that there is no expression €’ such that
e— €.

@ let £ = fun x —> x + x in £ (20 + 1)
@ let £ = fun x —> funy > x +y in 1 + £ 2

C. Paulin (Université Paris-Saclay) Compilation

Semantics and interpretation of FUN

a Semantics and interpretation of FUN

@ Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025-26 58/63

Equivalence between small step and big step

*

e = v if and only if e—="v

@ e — v implies e —* v : by induction on the derivation of e — v

@ e —* vimplies e = v (with v a value) : by induction on the length of
the reduction sequence e —* v.

o Lemma:ife + e ande = vthene — v.
Proof by induction on the derivation of e — €'.

(see full proof in the course notes)

C. Paulin (Université Paris-Saclay) Compilation 2025-26 59/63

Rules : big step

n — n fun X —> @ =— fun X -> €
e — M e — N e —= W eg[X = V1] — Vv
e1Pbe = N +no let X = € in €@ — V

ey =— fun X —> € & — W ex =w] = v
e 6 — V

C. Paulin (Université Paris-Saclay) Compilation

Rules : small step

ey — € e — & n+n=n
e1de — el de Vi e — vy D e, non—n
ey — €

let X = € in € — let X = eq in &

let X = v in e— e[x:=V]

er — € e — €
e 6 — eq 2] Vi € — Vg eé (fun X —> e) vV — e[x = V]

C. Paulin (Université Paris-Saclay) Compilation 2025-26 61/63

Exercises

o formalize the semantics of it and fix, both in big step and in small step
style;

@ extend FUN with lazy operators such as | | and ss, which do not evaluate
their second operand when the first one is sufficent for the final result

C. Paulin (Université Paris-Saclay) Compilation 2025-26 62/63

@ Abstract syntax
@ Inductive sets (definition of functions, proofs by induction)
@ Semantics of a functional language (dealing with (recursive) closure

@ Mathematical definition of semantics

@ using inference rules
@ big step/small step semantics
e example of proofs on semantics

C. Paulin (Université Paris-Saclay) Compilation 2025-26 63/63

	Introduction
	Semantics and interpretation of FUN
	Abstract and concrete syntax
	Inductive structures
	An interpret for FUN
	Natural semantics
	Small step operational semantics
	Equivalence between small step and big step

