
Programming Languages, semantics, compilers

Christine Paulin
Christine.Paulin@universite-paris-saclay.fr

Département Informatique, Faculté des Sciences d’Orsay, Université Paris-Saclay

M1 Informatique - MPRI

2025–26

C. Paulin (Université Paris-Saclay) Compilation 2025–26 1 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN

C. Paulin (Université Paris-Saclay) Compilation 2025–26 6 / 63

Organisation

Course created by Thibaut Balabonski (I am using his material)
Ecampus site :
https:
//ecampus.paris-saclay.fr/enrol/index.php?id=185060
(shared with the compiler’s course of L3, guest access COMPIL-25)
Evaluation : project + oral examination
Exceptionnaly : next week course will be on monday 15th afternoon
(13 :30 room C207)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 7 / 63

https://ecampus.paris-saclay.fr/enrol/index.php?id=185060
https://ecampus.paris-saclay.fr/enrol/index.php?id=185060

Contents

This course explores programming languages, focusing on two main topics :
their semantics, that is the formal description of the meaning of
programs ;
their compilation, that is the decomposition of high-level source language
programs into simpler instructions whose execution can be performed by
a computer.

We will define a functional programming language with a rich type system, and
build an optimizing compiler and an execution environment for this language.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 8 / 63

Plan

Semantics of a functional language
1 Semantics and interpretation
2 Types and safety

Assembly
1 The target : assembly code
2 Optimisations

Implementation of a functional language
1 Compilation
2 Automatic memory management

C. Paulin (Université Paris-Saclay) Compilation 2025–26 9 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 10 / 63

The FUN Language

l e t rec f a c t = fun n −>
i f n = 0 then

1
else

n * f a c t (n−1)
in
f a c t 6

C. Paulin (Université Paris-Saclay) Compilation 2025–26 11 / 63

Concrete syntax versus abstract syntax

Concrete syntax of a programming language :
a sequence of characters,
what the programmer is allowed to write,
what is understood as a legitimate program by the computer

> (1+23)*456+7
> (1 + 23) * 456 + 7
> (1+23) *456 +7

Abstract syntax :
a hierarchical representation of the input,
keeps only what is meaningful for computation

Add

Mul

Add

1 23

456

7

C. Paulin (Université Paris-Saclay) Compilation 2025–26 12 / 63

Syntactic sugar

A construction available in the concrete syntax but not in the abstract
syntax tree
Examples :

x += 1 translates to x = x + 1
t [i] translates to *(t+i)
let f x = e translates to let f = fun x −> e

C. Paulin (Université Paris-Saclay) Compilation 2025–26 13 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 14 / 63

Inductive structures

A mathematical way to describe tree structures and reason about them
Given : a signature, a set of “constructors” each one comes with an arity
Derived :

set of objects E build using a finite number of constructors
a way to define a function f ∈ E → A by case and using recursion
a awy to prove properties ∀x ∈ E ,P(x) by induction

C. Paulin (Université Paris-Saclay) Compilation 2025–26 15 / 63

Definition

We define a set of inductive objects with :
1 some base objects,
2 a set of constructors, that can combine already built objects to define new

objects.
We then consider the set of all objects that can be built using the two previous
points, only a finite number of times.

Each construtor comes with an arity : the number of expected elements
Base objects have an arity 0
The signature of a set of inductive objects is the set comprising its base
objects and its constructors.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 16 / 63

Example : lists

Linked lists can be seen as a set of inductive objects defined by :
a unique base object : the empty list, written [],
a constructor, which builds a new list e :: ℓ by adding a new element e at
the head of a list ℓ.

A small subtlety :
From the theoretical point of view, we might consider we have a set of
unary constructors e :: ., one for each element e
Alternatively, we might consider we have only one constructor which
expects 2 arguments, but only the second one is recursive

C. Paulin (Université Paris-Saclay) Compilation 2025–26 17 / 63

Example : arithmetic expressions.

We define a minimal set of arithmetic expression A with :
the integer constants as base objects,

0 1 2 3 ...

some binary constructors, each combining two already built expressions,
such as addition or multiplication.

Add

e1 e2

Mul

e1 e2

On can lighten the handling of such expression using mathematical notations
such as n, e1 ⊕ e2 or e1 ⊗ e2.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 18 / 63

Defining functions on a set of inductive objects

Each object of a set E of inductive objects can be built using only the base
objects and the constructors (finitely).
A function f applicable to the elements of E can thus be defined in a very
succinct way :

for each base element e, give f (e),
for each n-ary constructor c, describe f (c(e1, . . . ,en)) using the
subelements ei and their images f (ei) for each ei ∈ E .

This define a unique image for each element of E .

C. Paulin (Université Paris-Saclay) Compilation 2025–26 19 / 63

Examples

 nbCst(n) = 1
nbCst(e1 ⊕ e2) = nbCst(e1) + nbCst(e2)
nbCst(e1 ⊗ e2) = nbCst(e1) + nbCst(e2) nbOp(n) = 0
nbOp(e1 ⊕ e2) = 1 + nbOp(e1) + nbOp(e2)
nbOp(e1 ⊗ e2) = 1 + nbOp(e1) + nbOp(e2) eval(n) = n
eval(e1 ⊕ e2) = eval(e1) + eval(e2)
eval(e1 ⊗ e2) = eval(e1)× eval(e2)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 20 / 63

Inductive objects in Ocaml

type ’ a l i s t =
| []
| (: :) of ’ a * ’ a l i s t

Expressions are defined similarly, using three constructors.

type expr =
| Cst of i n t
| Add of expr * expr
| Mul of expr * expr

(1 ⊕ 2)⊕ (3 ⊗ 4) can be defined in caml by :

Add (Add (Cst 1 , Cst 2) , Mul (Cst 3 , Cst 4))

C. Paulin (Université Paris-Saclay) Compilation 2025–26 21 / 63

Functions

l e t rec nb_cst = function
| Cst n −> 1
| Add (e1 , e2) −> nb_cst e1 + nb_cst e2
| Mul (e1 , e2) −> nb_cst e1 + nb_cst e2

l e t rec eval = function
| Cst n −> n
| Add (e1 , e2) −> eval e1 + eval e2
| Mul (e1 , e2) −> eval e1 * eva l e2

l e t rec nb_op = function
| Cst _ −> 0
| Add (e1 , e2) | Mul (e1 , e2) −> nb_op e1 + nb_op e2

C. Paulin (Université Paris-Saclay) Compilation 2025–26 22 / 63

Reasoning by structural induction

Proving that a given property E is valid for all elements in E reduces to :
1 proving that P(e) is valid for each base element e,
2 proving, for each n-ary constructor c, and given n elements e1, ..., en that

the property P is valid for the combined element c(e1, . . . ,en) provided all
ei ∈ E satisfy P(ei).
In other words, for any constructor and any elements,
P(ei1) ∧ . . . ∧ P(eik) =⇒ P(c(e1, . . . ,en)).

Thus, we ensure that it is not possible to build an element e that does not
satisfy the target property P.
In the second point hypotheses P(ei1) to P(ein) that can be used for justifying
P(c(e1, . . . ,en)) are called induction hypotheses.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 23 / 63

Examples of induction principles

Proving that a property P is valid for all lists reduces to :
1 proving that it is valid for the empty list [],
2 for any list ℓ and any element e, proving that if P is valid for ℓ (induction

hypothesis), then it is still valid for e :: ℓ.

Proving that a property P is valid for all arithmetic expressions reduces
to :

1 proving that it is valid for all integer constants,
2 for any expressions e1 and e2, proving that if P is valid for e1 and e2

(induction hypotheses), then it is still valid for e1 ⊕ e2,
3 for any expressions e1 and e2, proving that if P is valid for e1 and e2

(induction hypotheses), then it is still valid for e1 ⊗ e2.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 24 / 63

Example of proof by induction

P(e) is the property nbCst(e) = nbOp(e) + 1,
Case of a constant (base case) : for any constant n we have nbCst(n) = 1
and nbOp(n) = 0. Then the property P is satisfied by the term n.
Case of an addition (inductive case) : let e1 and e2 be two expressions
satisfying the property P. Then

nbCst(e1 ⊕ e2)
= nbCst(e1) + nbCst(e2) by definition of nbCst
= (nbOp(e1) + 1) + (nbOp(e2) + 1) by induction hypotheses
= (1 + nbOp(e1) + nbOp(e2)) + 1 (reorder)
= nbOp(e1 ⊕ e2) + 1 by definition of nbOp

Thus, the property P is still valid for the term Add(e1,e2) = e1 ⊕ e2.
Case of a multiplication (inductive case) : similar to the case of an
addition.

Thus, using structural induction we proved that for any arithmetic expression
e, we have nbCst(e) = nbOp(e) + 1.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 25 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 26 / 63

Abstract syntax

A unique type of expressions

type bop = Add | Sub | Mul | L t | Eq (* | . . . *)
type expr =

(* a r i t h m e t i c *)
| I n t of i n t
| Bop of bop * expr * expr
(* v a r i ab l e s *)
| Var of s t r i n g
| Let of s t r i n g * expr * expr
(* c o n d i t i o n a l *)
| I f of expr * expr * expr
(* f u nc t i o ns *)
| Fun of s t r i n g * expr
| App of expr * expr
(* recu rs ion *)
| F ix of s t r i n g * expr

C. Paulin (Université Paris-Saclay) Compilation 2025–26 27 / 63

Abstract syntax : example

The expression let x = 41 in x+1 of FUN is represented in caml by
Let("x" , Int 41, Bop(Add, Var "x", Int 1)).
The constructor Fix describes a recursive definition.
let rec f x = e1 in e2 will be represented in caml by
Let(" f " , Fix(" f " , Fun("x", e1)), e2).
Note that the identifier " f " of the function appears twice here.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 28 / 63

Variables

A name for a value that has been computed before
define what a value is
keep track of valid names
keep track of the link between names and values (association table)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 29 / 63

Implementation (arithmetical part, without functions)

type value =
| V In t of i n t
| VBool of bool

Association tables implemented usind balanced trees

module Env = Map. Make(S t r i n g)
type env = value Env . t

Available objects from the module Env
Env.empty for an empty table
Env.find for fetching the value associated to a given key
Env.add for adding or updating an association.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 30 / 63

Eval function

l e t rec eval (e : expr) (env : env) : value = match e with
| I n t n −> VIn t n
| Bop (op , e1 , e2) −>

begin match op , eva l e1 env , eva l e2 env with
| Add , V In t n1 , V In t n2 −> VIn t (n1 + n2)
| Sub , V In t n1 , V In t n2 −> VIn t (n1 − n2)
| Mul , V In t n1 , V In t n2 −> VIn t (n1 * n2)
| Lt , V In t n1 , V In t n2 −> VBool (n1 < n2)
| Eq , v1 , v2 −> VBool (v1 = v2)
| _ −> f a i l w i t h " unauthor ized opera t ion "

end
| I f (c , e1 , e2) −>

begin match eval c env with
| VBool b −> i f b then eval e1 env

else eval e2 env
| _ −> f a i l w i t h " unauthor ized opera t ion "
end

C. Paulin (Université Paris-Saclay) Compilation 2025–26 31 / 63

Eval function (variables)

| Var x −> Env . f i n d x env
| Let (x , e1 , e2) −>

l e t v1 = eval e1 env in
l e t env ’ = Env . add x v1 env in
eval e2 env ’

l e t eval_ top (e : expr) : value = eval e Env . empty

C. Paulin (Université Paris-Saclay) Compilation 2025–26 32 / 63

Functions and functional closures

Functions are ordinary values, which can be passed to other functions as
parameters, or returned as results.

l e t plus n =
l e t f x = x + n in
f

a function plus defines and returns a local function f.
The definition of f uses a variable n which is external to f (it is called a
free variable).
the variable n is a parameter of the function plus.
Two calls plus 2 and plus 3 define two differents functions. Both
correspond to the code fun x −> x + n, however we have n = 2 in the
former case, and n = 3 in the latter.
a function-value is a function together with an environment providing at
least the values of all the external variables used in the function
We call this function/environment pair a functional closure.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 33 / 63

Implementation

type value = . . .
| VClos of s t r i n g * expr * env

The value corresponding to the function fun x -> e defined in the
environment ρ is represented by VClos("x", e, ρ).

l e t rec eval e env = match e with
. . .
| Fun (x , e) −> VClos (x , e , env)
| App (e1 , e2) −>

l e t x , e , env ’ = match eval e1 env with
| VClos (x , e , env ’) −> x , e , env ’
| _ −> f a i l w i t h " unauthor ized opera t ion "

in
l e t v2 = eval e2 env in
eval e (Env . add x v2 env ’)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 34 / 63

Recursion

A recursive function f , like any ordinary function, evaluates to a functional
closure c = VClos(x ,e, ρ).
We need the environment ρ of the closure c to contain c itself (as the
value of f)
we would like

eva l (F ix (f , Fun (x , e))) env

to produce a value v satisfying the recursive equation

v = VClos (x , e , Env . add f v env)

Not allowed in ocaml
Solution : add a specific value for recursive functions with all needed
information

C. Paulin (Université Paris-Saclay) Compilation 2025–26 35 / 63

Implementing recursive functions

type value =
. . .
| VFix of expr * s t r i n g * value * env

Given an expression e, an identifier f , and an environment ρ, the recursive
value v = VFix(e, f, v, ρ) is to be understood has the result of evaluating
e in the environment Env.add f v ρ.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 36 / 63

Evaluating recursive functions

the evaluation rule for Fix produces a recursive value VFix

an auxiliary function force: value -> value “opens” a recursive value
during function application

C. Paulin (Université Paris-Saclay) Compilation 2025–26 37 / 63

Evaluation of fixpoints

l e t rec eval e env = match e with
. . .

| F ix (f , Fun (x , e)) −>
l e t rec v = VFix (Fun (x , e) , f , v , env) in
v

| F ix _ −> f a i l w i t h " unauthor ized opera t ion "

| App (e1 , e2) −>
l e t x , e , env ’ = match f o rce (eva l e1 env) with

| VClos (x , e , env ’) −> x , e , env ’
| _ −> f a i l w i t h " unauthor ized opera t ion "
in l e t v2 = eval e2 env
in eval e (Env . add x v2 env ’)

and f o rce v = match v with
| VFix (Fun (x , e) , f , v , env) −> VClos (x , e , Env . add f v env)
| VClos (_ , _ , _) −> v
| _ −> f a i l w i t h " unauthor ized opera t ion "

C. Paulin (Université Paris-Saclay) Compilation 2025–26 38 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 39 / 63

Natural semantics

The evaluation function defined earlier in caml gives a meaning based on
caml
Semantics of programming languages is not always precisely defined

The Java programming language guarantees that the
operands of operators appear to be evaluated in a specific
order, namely, from left to right. It is recommended that
code do not rely crucially on this specification.

We want a formal semantics, a mathematical characterization of the
computation described by a program.
This more rigorous setting allows us to reason on the execution of
programs.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 40 / 63

Equational semantics

eval(n, ρ) = n
eval(e1 ⊕ e2, ρ) = eval(e1, ρ) + eval(e2, ρ)

eval(x , ρ) = ρ(x)
eval(let x = e1 in e2, ρ) = eval(e2, ρ ∪ {x 7→ eval(e1, ρ)})

eval(fun x -> e, ρ) = Clos(x ,e, ρ)
eval(e1 e2, ρ) = eval(e, ρ′ ∪ {x 7→ eval(e2, ρ)})

if eval(e1, ρ) = Clos(x ,e, ρ′)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 41 / 63

Avoiding the environment

Evaluate only closed values
Substitution : e[x := e′] denotes the replacement of each occurrence of
the variable x in the expression e by the other expression e′

n[x := e′] = n
(e1 + e2)[x := e′] = e1[x := e′] + e2[x := e′]

y [x := e′] =

{
e′ if x = y
y otherwise

(let y = e1 in e2)[x := e′] =

{
let y = e1[x := e′] in e2 if x = y
let y = e1[x := e′] in e2[x := e′] otherwise

(fun y -> e)[x := e′] =

{
fun y -> e if x = y
fun y -> e[x := e′] otherwise

(e1 e2)[x := e′] = e1[x := e′] e2[x := e′]

For the rules let and fun in the case x ̸= y are only applicable when
y ̸∈ fv(e′).
y being a bound (mute) variable, it can be replaced by a fresh name if
needed.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 42 / 63

Evaluation of closed expressions

eval(n) = n
eval(e1 ⊕ e2) = eval(e1) + eval(e2)

eval(x) = indéfini
eval(let x = e1 in e2) = eval(e2[x := eval(e1)])

eval(fun x -> e) = fun x -> e
eval(e1 e2) = eval(e[x := eval(e2)])

if eval(e1) = fun x -> e

C. Paulin (Université Paris-Saclay) Compilation 2025–26 43 / 63

Natural semantics

Also called big step semantics
Use a relation between expressions and values (e =⇒ v) instead of a
function in order to define the semantics
Use inference rules to define the relation

a proof of a concrete case e =⇒ v is represented as a tree
associated induction principle to use an hypothesis e =⇒ v

the set of values : integer numbers, and functions.

v ::= n
| fun x -> e

C. Paulin (Université Paris-Saclay) Compilation 2025–26 44 / 63

Rules

n =⇒ n

e1 =⇒ n1 e2 =⇒ n2

e1 ⊕ e2 =⇒ n1 + n2

e1 =⇒ v1 e2[x := v1] =⇒ v
let x = e1 in e2 =⇒ v

fun x -> e =⇒ fun x -> e

e1 =⇒ fun x -> e e2 =⇒ v2 e[x := v2] =⇒ v
e1 e2 =⇒ v

C. Paulin (Université Paris-Saclay) Compilation 2025–26 45 / 63

Example

fun x->x ⊕ x =⇒ fun x->x ⊕ x

...
(fun x -> x ⊕ x) (20 ⊕ 1) =⇒ 42

let f = fun x -> x ⊕ x in f (20 ⊕ 1) =⇒ 42

fun x->x ⊕ x =⇒ fun x->x ⊕ x
20 =⇒ 20 1 =⇒ 1

20 ⊕ 1 =⇒ 21
21 =⇒ 21 21 =⇒ 21

21 ⊕ 21 =⇒ 42
(fun x -> x ⊕ x) (20 ⊕ 1) =⇒ 42

C. Paulin (Université Paris-Saclay) Compilation 2025–26 46 / 63

Call by value versus call by name

The argument of a function is evaluated before executing the body
Alternatively

e1 =⇒ fun x -> e e[x := e2] =⇒ v
e1 e2 =⇒ v

e2[x := e1] =⇒ v
let x = e1 in e2 =⇒ v

C. Paulin (Université Paris-Saclay) Compilation 2025–26 47 / 63

Example

fun x->x ⊕ x =⇒ fun x->x ⊕ x

20 =⇒ 20 1 =⇒ 1
20 ⊕ 1 =⇒ 21

20 =⇒ 20 1 =⇒ 1
20 ⊕ 1 =⇒ 21

(20 ⊕ 1) ⊕ (20 ⊕ 1) =⇒ 42
(fun x -> x ⊕ x) (20 ⊕ 1) =⇒ 42

let f = fun x -> x ⊕ x in f (20 ⊕ 1) =⇒ 42

C. Paulin (Université Paris-Saclay) Compilation 2025–26 48 / 63

Reasoning on semantics

Prove that an hypothesis e =⇒ v implies a property P(e, v)
One case by inference rule

C. Paulin (Université Paris-Saclay) Compilation 2025–26 49 / 63

Example

Let us consider the call by name semantics for FUN

n =⇒ n
e1 =⇒ n1 e2 =⇒ n2

e1 ⊕ e2 =⇒ n1 + n2

e2[x := e1] =⇒ v
let x = e1 in e2 =⇒ v

fun x -> e =⇒ fun x -> e

e1 =⇒ fun x -> e e[x := e2] =⇒ v
e1 e2 =⇒ v

and prove that if e =⇒ v , then v is value such that fv(v) ⊆ fv(e), by induction
on the derivation of e =⇒ v .

C. Paulin (Université Paris-Saclay) Compilation 2025–26 50 / 63

Proof
Case n =⇒ n : immediate
Case fun x -> e =⇒ fun x -> e : immediate as well.
Case e1 ⊕ e2 =⇒ n1 + n2 with e1 =⇒ n1 and e2 =⇒ n2. By definition
n1 + n2 is an integer value. Moreover fv(n1 + n2) = ∅ ⊆ fv(e1 ⊕ e2).
Case let x = e1 in e2 =⇒ v with e2[x := e1] =⇒ v .
induction hypothesis : fv(v) ⊆ fv(e2[x := e1]) (and v is a value).
Lemma :

fv(e[x := e′]) ⊆ (fv(e) \ { x }) ∪ fv(e′)

Using the lemma, we get fv(v) ⊆ (fv(e2) \ { x }) ∪ fv(e1).
We have

fv(let x = e1 in e2) = fv(e1) ∪ (fv(e2) \ x)
Then fv(v) ⊆ fv(let x = e1 in e2).
Case e1 e2 =⇒ v with e1 =⇒ fun x -> e and e[x := e2] =⇒ v .
induction hypotheses v is a value, and fv(fun x -> e) ⊆ fv(e1) and
fv(v) ⊆ fv(e[x := e2]).

fv(v) ⊆ fv(e[x := e2])
= (fv(e) \ { x }) ∪ fv(e2)
= fv(fun x -> e) ∪ fv(e2)
⊆ fv(e1) ∪ fv(e2)
= fv(e1 e2)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 51 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 52 / 63

Small step operational semantics

Natural semantics speaks only about computations that succeed.
Small step semantics, or reduction semantics, provides finer information
by decomposing the evaluation e =⇒ v in a sequence of computation
steps e → e1 → e2 → . . . → v .
Three possible behaviors

a computation reaches a result (value) :

e → e1 → e2 → . . . → v

a computation which, stumbles on a failure state :

e → e1 → e2 → . . . → en

where en is not a value, but cannot be evaluated further,
a computation that never ends :

e → e1 → e2 → . . .

C. Paulin (Université Paris-Saclay) Compilation 2025–26 53 / 63

Computation rules

a binary relation e → e′ called reduction relation, describing a single step
of computation.
defined by a set of inference rules
elementary computation rules, giving base cases
inference rules that allow the application of a computation rule in a
subexpression.

C. Paulin (Université Paris-Saclay) Compilation 2025–26 54 / 63

Rules
Basic computational rules

(fun x -> e) v → e[x := v]

let x = v in e → e[x := v]

n1 + n2 = n
n1 ⊕ n2 → n

Dealing with subexpressions

e1 → e′
1

e1 ⊕ e2 → e′
1 ⊕ e2

e2 → e′
2

e1 ⊕ e2 → e1 ⊕ e′
2

Forcing the order of evaluation

e2 → e′
2

v1 ⊕ e2 → v1 ⊕ e′
2

C. Paulin (Université Paris-Saclay) Compilation 2025–26 55 / 63

Rules

Local variables and application

e1 → e′
1

let x = e1 in e2 → let x = e′
1 in e2

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v1 e2 → v1 e′
2

C. Paulin (Université Paris-Saclay) Compilation 2025–26 56 / 63

Vocabulary

e → e′ when 1 computation step leads from e to e′, and
e →∗ e′ when a computation leads from e to e′ using 0, 1 or more steps
(this is called a computation sequence or a reduction sequence).
An irreducible expression is an expression e from which no reduction
step can take place, that is such that there is no expression e′ such that
e → e′.

let f = fun x -> x + x in f (20 + 1)
let f = fun x -> fun y -> x + y in 1 + f 2

C. Paulin (Université Paris-Saclay) Compilation 2025–26 57 / 63

Semantics and interpretation of FUN

1 Semantics and interpretation of FUN
Abstract and concrete syntax
Inductive structures
An interpret for FUN
Natural semantics
Small step operational semantics
Equivalence between small step and big step

C. Paulin (Université Paris-Saclay) Compilation 2025–26 58 / 63

Equivalence between small step and big step

e =⇒ v if and only if e →∗ v

e =⇒ v implies e →∗ v : by induction on the derivation of e =⇒ v
e →∗ v implies e =⇒ v (with v a value) : by induction on the length of
the reduction sequence e →∗ v .

Lemma : if e → e′ and e′ =⇒ v then e =⇒ v .
Proof by induction on the derivation of e → e′.

(see full proof in the course notes)

C. Paulin (Université Paris-Saclay) Compilation 2025–26 59 / 63

Rules : big step

n =⇒ n fun x -> e =⇒ fun x -> e

e1 =⇒ n1 e2 =⇒ n2

e1 ⊕ e2 =⇒ n1 + n2

e1 =⇒ v1 e2[x := v1] =⇒ v
let x = e1 in e2 =⇒ v

e1 =⇒ fun x -> e e2 =⇒ v2 e[x := v2] =⇒ v
e1 e2 =⇒ v

C. Paulin (Université Paris-Saclay) Compilation 2025–26 60 / 63

Rules : small step

e1 → e′
1

e1 ⊕ e2 → e′
1 ⊕ e2

e2 → e′
2

v1 ⊕ e2 → v1 ⊕ e′
2

n1 + n2 = n
n1 ⊕ n2 → n

e1 → e′
1

let x = e1 in e2 → let x = e′
1 in e2

let x = v in e → e[x := v]

e1 → e′
1

e1 e2 → e′
1 e2

e2 → e′
2

v1 e2 → v1 e′
2 (fun x -> e) v → e[x := v]

C. Paulin (Université Paris-Saclay) Compilation 2025–26 61 / 63

Exercises

formalize the semantics of if and fix, both in big step and in small step
style ;
extend FUN with lazy operators such as || and &&, which do not evaluate
their second operand when the first one is sufficent for the final result

C. Paulin (Université Paris-Saclay) Compilation 2025–26 62 / 63

Summary

Abstract syntax
Inductive sets (definition of functions, proofs by induction)
Semantics of a functional language (dealing with (recursive) closure
Mathematical definition of semantics

using inference rules
big step/small step semantics
example of proofs on semantics

C. Paulin (Université Paris-Saclay) Compilation 2025–26 63 / 63

	Introduction
	Semantics and interpretation of FUN
	Abstract and concrete syntax
	Inductive structures
	An interpret for FUN
	Natural semantics
	Small step operational semantics
	Equivalence between small step and big step

