Feuille d'exercices 9

Primitives, intégrales. Intégration par parties, changements de variables.

Rappel. La fonction $\operatorname{arctan}: x \mapsto \int_0^x \frac{1}{1+t^2} dt$ est appelée $\operatorname{arctangente}$. Elle est définie $\operatorname{sur} \mathbb{R}$ et prend des valeurs comprises entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$. Enfin elle est caractérisée par l'équivalence

$$\theta = \arctan(x) \iff 1) \ \theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[\ et \ 2)\tan(\theta) = x.$$

Exercice 9.1.— Calculer les primitives des fonctions suivantes. On indiquera sur quel intervalle on travaille.

a)
$$x \mapsto x(x^3 + 1)$$
 b) $x \mapsto \frac{1}{x - 3}$ c) $x \mapsto \sin(2x - \pi/8)$ d) $x \mapsto \frac{1}{\sqrt{2x + 3}}$

e)
$$x \mapsto \frac{x+1}{x^2+2x+4}$$
 f) $x \mapsto \sin^2(x)$ g) $x \mapsto \frac{1}{\cos^2(x+\pi/2)}$ h)* $x \mapsto \frac{1}{x^2+4}$

Exercice 9.2.— Calculer les intégrales suivantes.

a)
$$\int_{1}^{2} \frac{x^3 + 3x^2 - 5x + 4}{x^4} dx$$
 b) $\int_{0}^{1} \frac{x - 2}{x^2 - 4x - 12} dx$ c)* $\int_{0}^{\frac{1}{\sqrt{3}}} \frac{x^2 - 1}{x^2 + 1} dx$

Exercice 9.3.— Calculer les intégrales suivantes, à l'aide d'une ou plusieurs intégrations par parties.

a)
$$\int_{1}^{e} \sqrt{x} \ln x \, dx$$
 puis $\int_{1}^{e} \ln x \, dx$, b) $\int_{0}^{1} (x+1)e^{-x} \, dx$ puis $\int_{0}^{1} (x+1)^{2}e^{-x} \, dx$, c) $\int_{0}^{\pi/2} (x^{2} - 3x + 2) \sin x \, dx$, d) $\int_{0}^{\pi/2} e^{x} \cos x \, dx$, e) $\int_{0}^{\pi/3} \tan x \, dx$

Exercice 9.4.— À l'aide de changements de variables simples, calculer les primitives ou les intégrales suivantes. On pourra à chaque fois commencer par écrire la fonction f(t) à intégrer sous la forme f(t) = g(u(t))u'(t), en explicitant les deux fonctions g(u) et u(t).

Pour les primitives, on précisera l'intervalle sur lequel on travaille.

a)
$$\int_{-\infty}^{\infty} \frac{dt}{t \ln^2 t}$$
 b)
$$\int_{-\infty}^{\infty} \sin^3 t \, dt$$
 c)
$$\int_{-\infty}^{\infty} \frac{\cos t}{2 + \sin t} \, dt$$

$$d) \int_0^{\pi/2} \frac{\cos t}{1 + \sin^2 t} dt \quad e) \int_3^8 \frac{dt}{t\sqrt{t+1}} dt \quad f) \int_0^{\ln(2)} \frac{4e^{2t} - 2e^{3t}}{1 + e^t} dt$$

Exercice 9.5.— Formule de Taylor avec reste intégral.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction trois fois dérivable, avec f'''(x) continue sur \mathbb{R} . On introduit trois expressions :

$$R_0(x) = \int_0^x f'(t) dt , \ R_1(x) = \int_0^x (x - t) f''(t) dt , \ R_2(x) = \int_0^x \frac{1}{2} (x - t)^2 f'''(t) dt.$$

- **1.** Montrer que $f(x) = f(0) + R_0(x)$.
- 2. En utilisant une intégration par parties relier $R_1(x)$ et $R_0(x)$. En déduire que

$$f(x) = f(0) + xf'(0) + R_1(x) .$$

3. En utilisant une intégration par parties relier $R_2(x)$ et $R_1(x)$. En déduire que

$$f(x) = f(0) + xf'(0) + \frac{1}{2}x^2f''(0) + R_2(x) .$$

4. Application : on considère $f(x) = e^x$. Rappeler le développement limité à l'ordre 2 en 0 de e^x , notamment la partie quadratique $P_2(x)$. Expliciter le reste intégral $f(x) - P_2(x) = R_2(x)$ (comme ci-dessus). En déduire que $1 + x + \frac{1}{2}x^2$ est une approximation de e^x à 10^{-3} près, pour peu que $|x| \le x$: compléter en justifiant!