Feuille d'exercices 8

Equations différentielles.

Exercice 8.1.— Premier ordre à coefficients constants

- 1. Résoudre l'équation différentielle x' 2x = -1.
- 2. Déterminer l'unique fonction $x:t\mapsto x(t)$ définie et dérivable sur $\mathbb R$ qui vérifie

$$\begin{cases} \forall t \in \mathbb{R}, x'(t) = 3x(t) \text{ (ou : } x' = 3x, \text{ ou : } x' - 3x = 0) \\ x(0) = 1 \end{cases}$$

- 3. Résoudre de même $\begin{cases} x' = \ln(2)x \\ x(1) = -4 \end{cases}$
- **4.** Résoudre l'équation différentielle $x'-2x=e^{2t}$ puis le problème différentiel $\begin{cases} x'=2x+e^{2t} \\ x(1)=3e^2 \end{cases}$

Exercice 8.2.— Deuxième ordre à coefficients constants

- 1. (cas homogène) Pour chacune des équations suivantes déterminer l'ensemble de toutes les solutions possibles :
 - (1) x'' 3x' + 2x = 0
 - (2) x'' 4x' + 4x = 0
 - (3) x'' 4x' + 5x = 0
- 2. (avec second membre) Pour chacune des équations suivantes déterminer l'ensemble de toutes les solutions possibles :
 - (1) x'' 3x' + 2x = 2, puis $x'' 3x' + 2x = 2e^{-t}$ et enfin $x'' 3x' + 2x = e^{t}$
 - (2) $x'' 4x' + 4x = e^t$, puis $x'' 4x' + 4x = e^{2t}$
 - (3) $x'' 4x' + 5x = \sin(2t)$, puis $x'' 4x' + 5x = \sin(t)$

Exercice 8.3.— Conditions initiales

Dans la deuxième question de l'exercice précédent déterminer l'unique solution telle que x(0) = 0 et x'(0) = 1.

Exercice 8.4.— Premier ordre à coefficients quelconques

Résoudre l'équation tx'(t) = 2x(t) - t. Expliciter la solution vérifiant x(1) = 0.