Feuille d'exercices 6

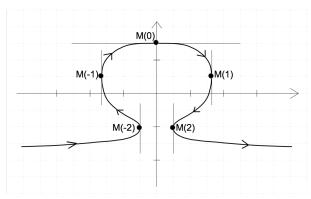
Courbes paramétrées

Exercice 6.1.— Tracer l'allure de la courbe paramétrée $M: t \mapsto (x(t), y(t))$ dont le tableau de variation conjoint est le suivant :

t	-2		-1		0		1		2
x'(t)	-4	_	-2	_	0	+	2	+	4
	4								4
x(t)		\searrow	1	V		7	1	7	
					0				
			2						2
y(t)		7		V	0	V		7	
	-2						-2		
y'(t)	9	+	0	_	-3	_	0	+	9

On tracera notamment les vecteurs vitesse et les tangentes donnés par le tableau.

Exercice 6.2.— On considère une courbe paramétrée $M(t)_{t\in\mathbb{R}}$ dont le tracé est le suivant :



Donner le tableau de variation conjoint de cette courbe.

Exercice 6.3.— On considère la courbe paramétrée définie par M(t) = (x(t), y(t)) avec $x(t) = \sin(\frac{t}{4})$ et $y(t) = \sin(t)$ pour $t \in \mathbb{R}$.

- 1. Montrer qu'on obtient la même courbe image si on se restreint aux valeurs de t dans l'intervalle $[-2\pi, 6\pi]$.
- 2. On se restreint pour l'instant aux valeurs de t dans l'intervalle $[0, 2\pi]$.
 - a. Donner dans un même tableau les variations de x(t) et y(t).
- **b.** Tracer les tangentes à la courbe aux points M(0), $M(\frac{\pi}{2})$, $M(\pi)$, $M(\frac{3\pi}{2})$, $M(2\pi)$.
- **c.** Donner l'équation de la tangente \tilde{A} la courbe en $t = \frac{2\pi}{3}$. Tracer cette tangente.
- **d.** Tracer la portion de courbe obtenue lorsque t décrit $[0,2\pi]$. On note $\mathcal C$ cet ensemble.
- **e.** Calculer $\sin(t)$ en fonction de $\sin(\frac{t}{4})$ pour $t \in [0, 2\pi]$. En déduire une fonction f dont \mathcal{C} est le graphe.
- 3. On voudrait tracer le reste de la courbe.
- **a.** Calculer M(-t) en fonction de M(t). À quelle opération géométrique correspond cette formule ? En déduire le tracé de la courbe correspondant à $t \in [-2\pi, 0]$.
- **b.** De même, calculer $M(t+4\pi)$ en fonction de M(t). À quelle opération géométrique correspond cette formule ? Quelle portion de courbe peut-on maintenant tracer ?
 - c. Finir le tracé de la courbe.

Exercice 6.4.— Quand on trace avec une calculatrice la courbe paramétrée d'équation $\gamma(t) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$, on trouve le cercle \mathcal{C} de centre (0,0) et de rayon 1.

- 1. Expliquer pour quoi l'image de cette courbe paramétrée γ est incluse dans le cercle \mathcal{C} .
- **2.** Donner le tableau de variation conjoint de γ . Quelle partie du cercle \mathcal{C} est décrite ?

Exercice 6.5.— Etudier les courbes paramétrées $t \mapsto (x(t), y(t))$ suivantes. On cherchera notamment les symétries, les tangentes horizontales ou verticales, les asymptotes (préciser les équations). Enfin tracer la courbe ainsi que la tangente T demandée.

- 1. $x(t) = t^2$, $y(t) = t^3 3t$. Equation de la tangente T en t = 2?
- **2.** $x(t) = t^2 + 2t$, $y(t) = \frac{1+t}{t^2}$. Equation de la tangente T en t = 1?
- **3.** $x(t) = \cos(t)$, $y(t) = \frac{t}{2} + \sin(t)$. Equation de la tangente T en $t = \frac{\pi}{2}$? Tracer d'abord la portion de courbe pour $t \in [0, 2\pi]$. Calculer ensuite $M(t+2\pi)$ en fonction de M(t), et interpréter géométriquement la formule obtenue. En déduire le reste du tracé.
- **4.** $x(t) = \frac{t}{1+t^2}$, $y(t) = \frac{t^2}{1+t^2}$. Equation de la tangente T en t=1? Comment se comporte la courbe quand t tend vers $+\infty$ ou $-\infty$? Avec quelle direction s'approche-t-elle du point limite?

Exercice 6.6.—

On pose $x(t) = \frac{\cos(t)}{2 + \cos(t)}$ et $y(t) = \frac{\sin(t)}{2 + \cos(t)}$, on étudie la courbe paramétrée M(t) = (x(t), y(t)) et on note \mathcal{E} la courbe image.

- 1. Montrer que M(t) et M(-t) sont symétriques par rapport \tilde{A} une droite qu'on précisera. Vérifier que $M(t+2\pi)=M(t)$. Expliquer comment obtenir le tracé de \mathcal{E} \tilde{A} partir du tracé de M(t) sur $[0,\pi]$.
- Déterminer le vecteur vitesse $\vec{V}(t)$. Dresser le tableau de variations conjoint (pour $t \in [0,\pi]$). Quelle est l'équation des tangentes T,T' en $t=0,\frac{\pi}{2}$? Tracer \mathcal{E} ainsi que T,T'.
- 3. Montrer qu'un point M=(x,y) du plan est dans \mathcal{E} si et seulement si ses coordonnées vérifient l'équation

$$\frac{9}{4}(x+\frac{1}{3})^2 + 3y^2 = 1$$

La courbe \mathcal{E} est une ellipse.

Exercice 6.7.— Tangente en un point $o\tilde{A}^1$ la dérivée s'annule. On étudie la courbe définie par $x(t) = 1 + t^2 - t^3$, $y(t) = t^2 + t^3$.

- 1. Calculer le vecteur vitesse $\vec{V}(t)$. Montrer que t=0 est le seul temps o \tilde{A}^1 $\vec{V}(t) = \vec{0}.$
- 2. Pour $t \neq 0$ calculer la pente p(t) de la sécante $\Delta = (M(0)M(t))$. Calculer $\lim_{t\to 0} p(t)$. En déduire que la courbe admet une tangente en t=0 et en donner une équation cartésienne.

Exercice 6.8.— On fixe un nombre complexe non nul z = a + ib. On pose $Z(t) = e^{zt}$, autrement dit $Z(t) = e^{at}(\cos(bt) + i\sin(bt))$. On étudie la courbe paramétrée définie (sur \mathbb{R}) par le point M(t) d'affixe Z(t). Soit $x(t) = e^{at}\cos(bt), y(t) = e^{at}\sin(bt).$

- 1. Quelle est la courbe image lorsque b = 0? et lorsque a = 0?
- 2. On revient au cas général. Déterminer le vecteur vitesse $\vec{V}(t)$. Vérifier que l'affixe de $\vec{V}(t)$ est ze^{zt} . La courbe a-t-elle un point stationnaire?
- **3.** Dans cette question on suppose que $a = \frac{1}{2}\sin(\frac{\pi}{12}), b = \frac{1}{2}\cos(\frac{\pi}{12}).$
- En utilisant le cosinus de l'angle double, donner une formule qui relie $\cos(\frac{\pi}{12})$ et $\cos(\frac{\pi}{6})$. En déduire que $\cos(\frac{\pi}{12}) = \frac{\sqrt{2+\sqrt{3}}}{2}$. Calculer alors $\sin(\frac{\pi}{12})$, puis montrer que $\tan(\frac{\pi}{12}) = 2 - \sqrt{3}$.
- **b.** On pose $\tau = \frac{4\pi}{\sqrt{2+\sqrt{3}}}$. Montrer que $M(t+\tau)$ se déduit de M(t) par une homothétie (qu'on précisera). Comment obtenir le tracé de la courbe géométrique $\{M(t)\}_{t\in\mathbb{R}}$ à partir du tracé de la courbe $\{M(t)\}_{t\in[0,\tau]}$?
- Comparer la longueur du rayon-vecteur $\overrightarrow{OM(t)}$ \widetilde{A} celle du vecteur vitesse $\vec{V}(t)$.

- **d.** Quelles sont les limites de x(t) et y(t) quand $t\to\pm\infty$? La courbe admet-elle une branche infinie quand $t\to+\infty$? une direction asymptotique?
- e. Donner le tableau de variation conjoint de x(t) et y(t) (pour $t \in [0, \tau]$). Donner l'équation de la tangente T_0 à la courbe en t = 0. Tracer la courbe (pour $t \in [0, \tau]$).