Feuille d'exercices 5

Calculs et utilisations de développements limités

Exercice 5.1.— Formule de Taylor.

- 1. Écrire la formule de Taylor en $x_0 = 0$ à l'ordre 2 (pour une fonction générale $x \mapsto f(x)$).
- **2.** À partir de cette formule, retrouver les DL(2) en 0 des fonctions $x \mapsto \exp(x)$, $x \mapsto \frac{1}{1+x}$, $x \mapsto \ln(1+x)$ et $x \mapsto \cos(x)$.

Exercice 5.2.— Somme et produit. En utilisant les formules vues en cours, calculer les développements limités des fonctions suivantes, en 0 à l'ordre 2.

- (1) $\sin(x) + \cos(x)$; $e^x + \frac{1}{1-x}$
- (2) $\sin(x)\cos(x)$; $\frac{e^x}{1-x}$.

Exercice 5.3.— Composition. En utilisant les formules vues en cours (DL(2) usuels à connaître), calculer les développements limités des fonctions suivantes, en 0 à l'ordre 2.

- (1) e^{5x} ;
- (2) $\sin(x^2)$;
- (3) $e^{\sin(x)}$;
- $(4) \frac{1}{1+\sin(x)};$
- (5) $\ln(\cos(x))$.

Exercice 5.4.— Limites à l'aide de développements limités. À l'aide de développements limités, trouver les limites des fonctions suivantes.

- (1) $\frac{\ln(1+x^2)}{e^x \sin(x) 1}$ en 0;
- (2) $\frac{1}{x} \frac{1}{\ln(1+x)}$ en 0;
- $(3) \ \frac{\tan(3\ln(\cos(x)))}{\ln(\cos(\tan(3x)))} \ \text{en} \ 0.$

Exercice 5.5.— Manipulations de fonctions epsilon.

Les calculs ci-dessous se lisent de gauche à droite.

Dans le membre de gauche, la notation ε désigne à chaque fois une certaine fonction (presque toujours de la variable x) qui n'est pas explicitée, mais qui par hypothèse tend vers 0 quand son argument tend vers 0.

On demande de justifier que les fonctions notées $\varepsilon(x)$ dans le membre de droite tendent vers 0 quand x tend vers 0. Pour cela il sera nécessaire de calculer explicitement les $\varepsilon(x)$ du membre de droite.

- (1) $x \exp(x) = \varepsilon(x); \sin(x) + \varepsilon(x) = \varepsilon(x); \varepsilon(x) + \varepsilon(x) = \varepsilon(x); \varepsilon(x) \varepsilon(x) = \varepsilon(x)$
- (2) $(2 + \varepsilon(x))\varepsilon(x) = \varepsilon(x); \varepsilon(x)\varepsilon(x) = \varepsilon(x); \varepsilon(\varepsilon(x)) = \varepsilon(x)$
- (3) $(1+x-x^2+x^2\varepsilon(x))+(2-3x+2x^2+x^2\varepsilon(x))=3-2x+x^2+x^2\varepsilon(x)$
- $(4) \left(1+x-x^2+x^2\varepsilon(x)\right)+\left(2-3x+x\varepsilon(x)\right)=3-2x+x\varepsilon(x); 3x^2+x^2\varepsilon(x)=\varepsilon(x)=x\varepsilon(x)$
- (5) $(2-x+3x^2+x^2\varepsilon(x))-(1+x-x^2+x^2\varepsilon(x))=1-2x+4x^2+x^2\varepsilon(x)$
- (6) $(-1+2x-3x^2+x^2\varepsilon(x))-(1+x+x^2+x^2\varepsilon(x))-(-2+x-4x^2+x^2\varepsilon(x))=x^2\varepsilon(x)$
- $(7) x^2(x-2x^2+x^2\varepsilon(x)) = x^2\varepsilon(x); (1+x+x\varepsilon(x))(1-x+x\varepsilon(x)) = 1+x\varepsilon(x)$
- $(8) \left(3 2x + x^2 + x^2 \varepsilon(x)\right) + \left(1 + x 2x^2 + x^2 \varepsilon(x)\right) = 3 + x 7x^2 + x^2 \varepsilon(x)$
- (9) $(1+x+x\varepsilon(x))(2+3x+4x^2+x^2\varepsilon(x))=2+5x+x\varepsilon(x)$
- (10) $(1+x+x\varepsilon(x))(3x+4x^2+x^2\varepsilon(x)) = 3x+7x^2+x^2\varepsilon(x)$
- (11) Pour $y = 3x + 2x^2 + x^2 \varepsilon(x)$ on a $-4 + 2y y^2 + y^2 \varepsilon(y) = -4 + 6x 5x^2 + x^2 \varepsilon(x)$

Exercice 5.6.— Développements limités et allure des fonctions

Calculer les développements limités des fonctions ci-dessous en 0 à l'ordre 2, et en déduire l'allure du graphe de ces fonctions au voisinage de 0 (équation de la tangente et position par rapport à celle-ci).

- (1) $\exp(x) + \sin(x)$;
- (2) $\exp(x)\sin(x)$;
- (3) $\sqrt{1+2x} \ln(1+x)$;
- (4) $\ln(1+x+x^2)$;
- (5) $\exp(\sqrt{1+x})$.

Exercice 5.7.— Développements limités en $x_0 \neq 0$.

Donner le développement limité à l'ordre 2 en $\frac{\pi}{2}$ de la fonction $f: x \mapsto \frac{\sin(x)}{\sqrt{x}}$,

- 1. en calculant les dérivées successives de f.
- 2. en effectuant le changement de variable $x = u + \pi/2$, et en utilisant des développements limités connus.

Exercice 5.8.— Limites à l'aide de développements limités.

Déterminer
$$\lim_{x \to 1} \frac{(3+x)^{\frac{1}{2}} - (7+x)^{\frac{1}{3}} - \frac{1}{6}x}{\ln(x)\sin(\pi x)}$$
.

Exercice 5.9.— Développements limités et signe à la limite. Déterminer le signe de $f(x) = \frac{1+x}{2} + \ln(\cos(x-1)) - \sqrt{x}$ pour x suffisamment proche de $x_0 = 1$.

Exercice 5.10.— Développements limités en $x_0 \neq 0$ et allure des fonctions. Déterminer l'allure du graphe (tangente et position par rapport à celle-ci) au voisinage du point x_0 pour les fonctions suivantes.

- (1) $f_1: x \mapsto \ln(1+x+x^2)$ en $x_0 = 1$.
- (2) $f_2: x \mapsto \sin(\ln(x)) \text{ en } x_0 = 1.$
- (3) $f_3: x \mapsto \cos^2(x)$ en $x_0 = \frac{\pi}{2}$. Pouvait-on donner la tangente et la position du graphe par rapport \tilde{A} celle-ci sans calculer le DL(2)?

Exercice 5.11.— Comparaison de fonctions. On considère les deux fonctions $x \mapsto 1 - \frac{1}{x}$ et $x \mapsto \ln x$.

- 1. Montrer que les deux graphes ont la même tangente au point d'abscisse 1. Quelle est la position des deux graphes par rapport \tilde{A} cette tangente?
- **2.** Comparer les deux fonctions au voisinage de x = 1: lequel des deux graphes est au-dessus de l'autre?
- 3. Tracer rapidement sur un m $\tilde{A}^{\underline{a}}$ me dessin les deux graphes ainsi que la tangente.

Exercice 5.12.— Asymptotes \tilde{A} un graphe de fonction.

Montrer que chacune des fonctions suivantes admet une asymptote quand $x \to +\infty$, en donner une équation, et enfin trouver la position du graphe par rapport à son asymptote.

(1)
$$g_1: x \mapsto -3x + 2 + \sin\frac{1}{x};$$

(2)
$$g_2: x \mapsto \frac{x^2+1}{x+1};$$

(3)
$$g_3: x \mapsto (x+1) \exp(\frac{1}{x-1})$$
.

Exercice 5.13.— Asymptotes à une courbe paramétrée.

On considère la courbe paramétrée M(t) définie par $x(t) = \frac{2t^2}{1+t}$ et $y(t) = \frac{t^3}{1+t^2}$. Montrer que la courbe image de M(t) admet une droite asymptote D quand $t \to \pm \infty$. On donnera une équation de D et on précisera la position de la courbe par rapport à son asymptote.

Exercice 5.14.— DLs et allure locale des courbes paramétrées. Pour chacune des courbes paramétrées suivantes, effectuer un DL de x(t) et y(t) au temps t_0 considéré pour en déduire une équation de la tangente en $M(t_0)$ et la position de la courbe relativement à cette tangente :

- (1) $x(t) = -e^t$, $y(t) = \cos(t)$ en $t_0 = 0$;
- (2) $x(t) = \sqrt{1+2t}$, $y(t) = \sin(t)$ en $t_0 = 0$;
- (3) $x(t) = 1 \ln(t)$, $y(t) = 1 + \ln(2t 1)$ en $t_0 = 1$;
- (4) $x(t) = 2t + t^2$, $y(t) = 1 + 3t + t^2$ en $t_0 = -1$.

Exercice 5.15.— Fonctions convexes.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction deux fois dérivable sur \mathbb{R} .

- 1. Dans cette question, on suppose que pour tout réel x on a f''(x) > 0.
- a. Montrer alors qu'aucune droite du plan ne coupe le graphe de f en trois points distincts ou plus. (On pourra utiliser le théorème des accroissements finis.)
- **b.** Montrer que chaque tangente au graphe de f coupe le graphe en exactement un point. (MÃ^ame indication.)
- **2.** Donner un exemple explicite de fonction $f: \mathbb{R} \to \mathbb{R}$ deux fois dérivable sur \mathbb{R} qui ne vérifie pas les propriétés géométriques ci-dessus.

Exercice 5.16.— Points d'inflexion.

On suppose que $f: [-1,1] \to \mathbb{R}$ est une fonction trois fois dérivable, avec f''(0) = 0 et f'''(0) > 0. Montrer que la courbe représentative de f traverse sa tangente en (0, f(0)), et donner précisément la position de la courbe représentative de f par rapport à sa tangente en 0 en un point d'abscisse x petite, selon le signe de x.