Feuille d'exercices 12

Dérivée le long d'une courbe. Points critiques. Extremums.

Exercice 12.1.— Dérivées le long d'une courbe, dérivées composées

1. Soit f une fonction de deux variables. Soit alors g la fonction définie sur \mathbb{R} par $g(t) = f(t^2, 3t + 2)$. Donner l'expression de g'(t) en fonction des dérivées partielles de f. Même question pour les fonctions

$$h(t) = f(t,t)$$
; $j(t) = f(\sin(t),\cos(t))$; $k(t) = f(e^t\sin(t),\ln(1+t^2))$

- **2.** Soit f une fonction dérivable de \mathbb{R} dans \mathbb{R} .
 - a. Exprimer les dérivées partielles de la fonction f(xy) à l'aide de la dérivée f'.
 - **b.** Même question pour la fonction $f(xy\cos(xy^2))$.

Exercice 12.2.— Après avoir calculé les dérivées partielles, déterminer les points critiques des fonctions suivantes.

- 1. $f_1(x,y) = 1 + 2(x-1)^2 + 3(y-2)^2$.
- **2.** $f_2(x,y) = 1 + x + y + x^2 xy + y^2$.
- **3.** $f_3(x,y) = x^3 + 3x^2y 15x 12y$.
- **4.** (plus difficile) $f_4(x,y) = (1-x)(1-y)(x+y-1)$.
- **5.** Revenons à la fonction f_1 . Quelle est la valeur minimale prise par f_1 sur \mathbb{R}^2 ? En quel point du plan \mathbb{R}^2 cette valeur est-elle atteinte? Retrouver alors le résultat de la question 1.

Exercice 12.3.— Point critique : étude par restriction à des droites

On considère la fonction définie par

$$f(x,y) = xy + \frac{2}{x} + \frac{2}{y} - \frac{3}{2}x - \frac{3}{2}y.$$

- 1. Quel est le domaine de définition de f?
- **2.** On veut montrer que f admet un seul point critique.
- **a.** Etudier la fonction g(x) = f(x, x). En déduire que f(x, y) admet sur la droite d'équation y = x un et un seul point critique (dont les coordonnées sont entières). Quelle est la valeur en ce point critique?
- **b.** En factorisant la différence $\frac{\partial f}{\partial x}(x,y) \frac{\partial f}{\partial y}(x,y)$, montrer que f(x,y) n'admet pas de point critique en dehors de la droite d'équation y = x, et conclure.
- **3.** Reprendre l'étude de g(x) et en déduire que le point critique de f n'est pas un maximum (local ou absolu).
- **4.** Etudier la fonction h(x) = f(x, 4-x) (on pourra factoriser h'(x) par 2x-4). En déduire que le point critique de f n'est pas un minimum (local ou absolu).
- 5. La fonction f présente t-elle un extremum (local ou absolu) sur son domaine de définition?

Exercice 12.4.— Lignes de niveaux de formes quadratiques

- 1. Montrer que la courbe $t \mapsto (\cos(t), 2\sin(t))$ reste à un niveau constant lequel?- pour la fonction $f(x,y) = 4x^2 + y^2$. Deviner alors une paramétrisation de l'ensemble de niveau 1 de f(x,y).
- **2.** Montrer que la fonction $f(x,y) = x^2 + 2xy + 10y^2$ est de la forme $X^2 + 9y^2$, où X s'exprime simplement en fonction de x et y. En déduire que la courbe $t \mapsto (3\cos(t) \sin(t), \sin(t))$ reste à un niveau constant pour la fonction f(x,y). Comment décrire paramétriquement l'ensemble de niveau c > 0 quelconque?
- **3.** Montrer que la courbe $t\mapsto (t,\frac{1}{t})$ reste à un niveau constant lequel ?- pour la fonction f(x,y)=3xy. En déduire une paramétrisation de l'ensemble de niveau $c\neq 0$ de $g(x,y)=x^2-y^2$ (on pourra poser X=x+y,Y=x-y).

Exercice 12.5.— Pour chacune des formes quadratiques suivantes :

- a. obtenir une forme canonique (somme de carrés ou produit de deux termes linéaires);
- **b.** donner l'allure des courbes de niveau passant par un point proche de (0,0);
- **c.** dire si (0,0) est un maximum, un minimum, ou un point col.

$$q_1(x,y) = 4xy$$
; $q_2(x,y) = x^2 - 2xy + 2y^2$; $q_3(x,y) = -4x^2 - 12xy - 8y^2$; $q_4(x,y) = 4x^2 - 12xy + 9y^2$

Exercice 12.6.— Point critique des polynômes de degré 2. On considère les fonctions

$$f_1(x,y) = 1 + x - y + x^2 - 2xy + 2y^2$$
, $f_2(x,y) = 1 + 2x + y - x^2 - xy - y^2$, $f_3(x,y) = 1 - x + y + x^2 + 4xy + y^2$
Pour chacune des fonctions $f_i(x,y)$:

- 1. Déterminer le gradient de $f_i(x,y)$ en tout point (x,y) de \mathbb{R}^2 .
- **2.** Quel est l'unique point critique A = (a, b) de $f_i(x, y)$?
- **3.** Etudier le signe de $f_i(x,y) f_i(a,b)$ (pour cela on pourra considérer les variables h = x a et k = y b puis la forme quadratique $Q(h,k) = f_i(a+h,b+k) f_i(a,b)$). La fonction $f_i(x,y)$ admet-elle un extremum local ou global?

Exercice 12.7.— Ensemble de niveau singulier et point critique

Soit f(x, y) une fonction de deux variables. On suppose qu'il existe deux courbes de classe C^1 , notées $t \mapsto M_1(t) = (x_1(t), y_1(t))$ et $t \mapsto M_2(t) = (x_2(t), y_2(t))$ (définie sur \mathbb{R}), telles que

- (1) La fonction f(x,y) est identiquement nulle sur les deux courbes : $f(x_1(t),y_1(t))=0$ et $f(x_2(t),y_2(t))=0$ pour tout $t\in\mathbb{R}$.
- (2) En t = 0 on a $M_1(0) = M_2(0) = (a, b)$, et les vecteurs vitesse $\vec{V}_1(0)$, $\vec{V}_2(0)$ sont non nuls, de direction différente (non parallèlles)

- 1. Dessiner l'allure de l'ensemble de niveau 0 au voisinage de (a,b). Quelles sont les contraintes sur le vecteur gradient de f en (a,b)? En déduire que (a,b) est un point critique.
- 2. Application : étude de $f(x,y)=(2-x^2-y^2)(y-x^2)$. a. Montrer que l'ensemble de niveau 0 de f(x,y) est la réunion de deux courbes. En déduire que f(x,y) possède deux points critiques et déterminer ces points critiques.
- **b.** Étudier le signe de f(x,y) en fonction de x et y pour (x,y) proche d'un des points critiques trouvés ci-dessus : faire un dessin dans le plan (Oxy) en indiquant les régions où f > 0, f = 0, f < 0. Le point (1,1) est-il un maximum ou un minimum local?