Feuille d'exercices 2

Sup, inf, nombres complexes

Exercice 2.1.— Pour chacun des sous-ensembles de \mathbb{R} suivants, dire en justifiant vos affirmations s'il est majoré, minoré, donner si elles existent sa borne supérieure et inférieure, et préciser s'il possède un maximum et un minimum.

- (a) $\left\{ \left(-\frac{1}{2} \right)^n : n \in \mathbb{N} \right\}$,
- (b) $\left\{3+n+\frac{2}{n}+(-1)^n n: n \in \mathbb{N}\right\}$,
- (c) $\left\{n + \frac{1}{p} : n, p \in \mathbb{N}^*\right\}$,
- (d) $\left\{\frac{n-1}{n}: n \in \mathbb{N}^*\right\}$,
- (e) $\left\{ \frac{1}{n} + \frac{(-1)^p}{p} : n, p \in \mathbb{N}^* \right\}$,
- (f) $\{q \in \mathbb{Q} : (1+q^2) \le 2\}.$

Exercice 2.2.— Calculer les parties réelles et imaginaires des nombres complexes suivants :

$$(1-i)^3$$
, $\frac{1+i}{\sqrt{3}+i}$, $e^{-24i\pi} + e^{3i\pi}$.

Exercice 2.3.— Calculer le module et l'argument (pris dans $[0,2\pi[)$ des nombres complexes suivants :

$$1+i$$
, $\sqrt{3}+i$, $1-i\sqrt{3}$, $\frac{1+i}{\sqrt{3}+i}$.

En déduire les valeurs de $\cos \pi/12$ et $\sin(\pi/12)$. Exercice 2.4.— Déterminer les racines carrées des nombres complexes suivants :

$$15 - 8i$$
, $1 + i$, $5 + 12i$, $3 - 2i$.

Exercice 2.5.— Résoudre dans $\mathbb C$ les équations du second degré suivantes :

$$z^{2} + z + 1 = 0,$$

$$z^{2} - (1+2i)z - (1+i) = 0,$$

$$z^{2} - 5(1+i)z + 17i = 0,$$

$$2z^{2} + (3-i)z + 1 - i = 0.$$