Feuille d'exercices 1

Ensembles et logique

Exercice 1.1.— 1. Montrer que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ et $(A \cup B)^c = A^c \cap B^c$.

- 2. Énumérer les éléments de $\{1,2,3\} \times \{1,2,3,4\}$.
- 3. Représenter les sous-ensembles de \mathbb{R}^2 suivants :

$$([0,1] \cup [2,3]) \times [-1,1],$$

$$(\mathbb{R}\setminus[0,1])\times((\mathbb{R}\setminus[-1,1])\cap[0,2]).$$

Exercice 1.2.— 1. Écrire la négation de « $P \Rightarrow Q$ ».

- 2. Écrire à l'aide de quantificateurs l'assertion suivante : « le carré de tout nombre réel est positif »
- 3. Même question pour « pour chaque réel, je peux trouver un entier relatif tel que leur produit soit strictement plus grand que 1 ».
- 4. Même question pour « pour tout entier n il existe un unique nombre réel x tel que $\exp(x)$ est égal à n ».

Exercice 1.3.— 1. (raisonnement direct). Soit $a, b \in \mathbb{R}^+$. Montrer que si $a \leq b$ alors

$$a \le \frac{a+b}{2} \le b$$
 et $a \le \sqrt{ab} \le b$.

- 2. (disjonction de cas) Montrer que pour tout $n \in \mathbb{N}$ l'entier n(n+1) est pair (distinguer les cas n pair et n impair).
- 3. (contraposée ou absurde). Soient $a,b\in\mathbb{Z}$. Montrer que si $b\neq 0$ alors $a+b\sqrt{2}\notin\mathbb{Q}$. (Utiliser que $\sqrt{2}\notin\mathbb{Q}$).
 - 4. (absurde) Soit $n \in \mathbb{N}^*$. Montrer que $\sqrt{n^2 + 1}$ n'est pas un entier.
 - 5. (contre exemple) Est-ce que pour tout $x \in \mathbb{R}$ on a $x < 2 \Rightarrow x^2 < 4$?
 - 6. (récurrence) Montrer que pour tout entier $n \ge 1$ on a

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

7. (récurrence) Soit $x \in \mathbb{R}^+$. Montrer que pour tout entier $n \geq 1$ on a $(1+x)^n \geq 1+nx$.