Examen final de Mai – algèbre linéaire

La précision des arguments utilisés et la qualité de la rédaction entreront pour une part importante dans l'appréciation de la copie. Merci de ne pas écrire au crayon à papier. L'utilisation de la calculatrice, du téléphone portable ou de tout objet connecté ainsi que des notes de cours/TD est interdite. Barême indicatif sur 30 points (Note ramenée sur 20 par coefficient 2/3).

Exercice 1. (5 points) Soit $f: \mathbb{R}^4 \longrightarrow \mathbb{R}^3$, f(x, y, z, t) = (x + y, y - z, x + t).

- 1. Montrer que f est une application linéaire.
- 2. Montrer sans calculs que f ne peut pas être injective.
- 3. Ecrire la matrice de f sur les bases canoniques de \mathbb{R}^4 et \mathbb{R}^3 .
- 4. Déterminer le rang de f par la méthode de votre choix (expliquer).

Exercice 2. (5 points) On considère dans \mathbb{R}^2 les sous-espaces vectoriels D_1 et D_2 définis par

$$D_1 := \{(x, y) \in \mathbb{R}^2 \mid x = -y\}, \quad D_2 := \{(x, y) \in \mathbb{R}^2 \mid x = 0\}.$$

- 1. Montrer que $D_1 \oplus D_2 = \mathbb{R}^2$. Pour tout $u = (x, y) \in \mathbb{R}^2$, donner en coordonnées (en fonction de x et y) les vecteurs $u_1 \in D_1$ et $u_2 \in D_2$ de la décomposition $u = u_1 + u_2$ associée à la somme directe.
- 2. Soit $s: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$; $s(u) = u_1 u_2$ où u_1 et u_2 sont les vecteurs calculés dans la question 1. Calculer les coordonnées de s(x,y) pour tout (x,y) et calculer la matrice de s sur la base (pourquoi est-ce une base de \mathbb{R}^2 ?) ((0,1),(1,-1)) de \mathbb{R}^2 .

Exercice 3. (10 points) Dans \mathbb{R}^3 , on considère les vecteurs suivants : $u_1 = (3, 2, 1)$, $u_2 = (1, 1, 0)$, $u_3 = (1, 1, 1)$. On admet que $B = (u_1, u_2, u_3)$ est une base de \mathbb{R}^3 . On pose $F = \text{Vect}(u_3)$ et on pose $G = \text{Vect}(u_1, u_2)$.

- 1. Déterminer un système d'équations (cartésiennes) de G.
- 2. Déterminer les dimensions de G et F et montrer que ce sont deux espaces vectoriels supplémentaires de \mathbb{R}^3 .
- 3. Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ l'application linéaire déterminée par $f(u_1) = 0$, $f(u_2) = 0$, $f(u_3) = u_3$. Quelle est la matrice A de f dans la base B? Reconnaissez-vous de quel type d'application linéaire il s'agit? si oui, laquelle?
- 4. Ecrire la matrice de passage de la base canonique B_{can} de \mathbb{R}^3 à B.
- 5. Calculer la matrice de f dans la base canonique.

Exercice 4. (10 points) Soit $\mathbb{R}_3[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 3. Pour toute la suite de l'exercice, on appelle $f: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$, l'application définie par si f(P) = P + 2P' + 4P'' où P' est le polynôme dérivé de P et P'' le polynôme dérivée seconde.

- 1. Vérifier que f est une application linéaire.
- 2. Calculer $f(X^{j})$ pour j = 0, 1, 2, 3.
- 3. Ecrire la matrice A de f sur la base canonique $(1, X, X^2, X^3)$.
- 4. Calculer l'inverse de la matrice A par la matrice augmentée ou par le système associé.
- 5. A l'aide du calcul de A^{-1} de la question précédente, montrer que pour tout $P \in \mathbb{R}_3[X]$, $f^{-1}(P) = P 2P' + 8P'''$ où P''' est le polynôme dérivée troisième de P.