

Contents lists available at SciVerse ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Assessment of the health risks related to the presence of drug residues in water for human consumption: Application to carbamazepine

Paul Houeto^{a,*}, Aude Carton^a, Michel Guerbet^b, Anne-Cécile Mauclaire^a, Chantal Gatignol^c, Philippe Lechat^a, Dominique Masset^a

^a Département de toxicologie, DEMEB, Agence Française de sécurité sanitaire des produits de santé (Afssaps), 143/147, Bd Anatole France, F-93285 Saint-Denis, France ^b Laboratoire de toxicologie, ADEN EA 4311, UFR Médecine Pharmacie, Université de Rouen, 22, Boulevard Gambetta, 76183 Rouen, France ^c Prévention des risques liés à l'environnement et Alimentation, Bureau Qualité des eaux (EA4), Direction Générale de la Santé (DGS), Ministère Travail, Emploi et Santé, 14 Avenue Duquesne, 75007 Paris, France

CONTEXT AND OBJECTIVE OF THE STUDY?

Contents lists available at SciVerse ScienceDirect

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Assessment of the health risks related to the presence of drug residues in water for human consumption: Application to carbamazepine

Paul Houeto^{a,*}, Aude Carton^a, Michel Guerbet^b, Anne-Cécile Mauclaire^a, Chantal Gatignol^c, Philippe Lechat^a, Dominique Masset^a

^a Département de toxicologie, DEMEB, Agence Française de sécurité sanitaire des produits de santé (Afssaps), 143/147, Bd Anatole France, F-93285 Saint-Denis, France ^b Laboratoire de toxicologie, ADEN EA 4311, UFR Médecine Pharmacie, Université de Rouen, 22, Boulevard Gambetta, 76183 Rouen, France ^c Prévention des risques liés à l'environnement et Alimentation, Bureau Qualité des eaux (EA4), Direction Générale de la Santé (DGS), Ministère Travail, Emploi et Santé, 14 Avenue Duquesne, 75007 Paris, France

CONTEXT AND OBJECTIVE OF THE STUDY?

Contents lists available at SciVerse ScienceDirect

Regulatory Toxicology and Pharmacology

Regulatory Toxicology and Pharmacology

journal homepage: www.elsevier.com/locate/yrtph

Assessment of the health risks related to the presence of drug residues in water for human consumption: Application to carbamazepine

Paul Houeto^{a,*}, Aude Carton^a, Michel Guerbet^b, Anne-Cécile Mauclaire^a, Chantal Gatignol^c, Philippe Lechat^a, Dominique Masset^a

^a Département de toxicologie, DEMEB, Agence Française de sécurité sanitaire des produits de santé (Afssaps), 143/147, Bd Anatole France, F-93285 Saint-Denis, France ^b Laboratoire de toxicologie, ADEN EA 4311, UFR Médecine Pharmacie, Université de Rouen, 22, Boulevard Gambetta, 76183 Rouen, France ^c Prévention des risques liés à l'environnement et Alimentation, Bureau Qualité des eaux (EA4), Direction Générale de la Santé (DGS), Ministère Travail, Emploi et Santé, 14 Avenue Duquesne, 75007 Paris, France

OBJECTIVE:

Taking into account that the occurrence of **pharmaceutical residues in water intended for human consumption (WIHC)** is a common concern in the served populations, we aimed to develop a general strategy in order to determine more precisely **their safety concern through** three possible ways to approach this question, for individual chemicals.

We propose the following algorithm: (1) when there is human or animal toxicity data, a toxicity reference value (TRV) can be calculated; (2) when this is not applicable, an attempt should be made to derive the TRV using known information about the minimum therapeutic dose (MTD); and (3) when no applicable data is available, at all, a threshold of toxicological concern (TTC) should be estimated.

In order to apply and compare the different approaches and in addition whether there is a safety concern, we will use two compounds, carbamazepine and its major metabolite 10,11-epoxycarbamazepine resulting in a list of chemicals from a national sampling survey to model such an approach.

NATIONAL SAMPLING SURVEY?

1-Seletion criteria of molecules?

2-Number of molecules analysed?

3-Selection criterion of sites?

4-Focus on which drugs?

NATIONAL SAMPLING SURVEY

List of 76 priority molecules according criteria (tonnage, solubility, activity)

45 molecules from different chemical families and therapeutic classes

Choices of exposure concentrations ?

238 sites representative of \approx 24 % of population served

19 molecules detected at least one

Table 1

Frequency of detection and quantification of different molecules in water intended for human consumption (Anses, 2011).

Molecules (n = 280 samples)	Frequency of quantifiable results (>LQ)	Minimum and Maximum content (ng/L)
Carbamazepine	4.0 %	5-33
Epoxycarbamazepine	7,6%	1-6

LQ, limit of quantification (1-50 ng/L); n, number of samples.

NATIONAL SAMPLING SURVEY

List of 76 priority molecules according criteria (tonnage, solubility, activity)

45 molecules from different chemical families and therapeutic classes

238 sites representative of \approx 24 % of population served

19 molecules detected at least one

Choices of exposure concentrations: The highest !

Table 1 Frequency of detection and quantification of different molecules in water intended for human consumption (Anses, 2011).

Molecules (n = 280 samples)	Frequency of quantifiable (>LQ)	y of Minimum and Maximu ble results content (ng/L)		
Carbamazepine Epoxycarbamazepine	4.0 % 7.6%	5	-83 1-6	

LQ, limit of quantification (1-50 ng/L); n, number of samples,

(2) TRV_{MTD} (3) TTC (1) TRV_{Tox} The Toxicity Reference Value The Minimum Therapeutic Dose The Threshold of Toxicological Concern (MTD) approach? (TTC) approach? (TRV) approach? **Calculated value? Calculated value? Calculated value?** Data used? Data used? Data used? Limits? Limits? Limits?

(1) TRV_{Tox} The Toxicity Reference Value (TRV) approach?

Calculated value? Toxicological approach based on NOAEL/LOAEL/BMDL

Data used? Pharmaco-toxicological studies from the marketing authorization dossier or literature data

Limits?

lack of data, especially in the case of metabolites and old molecules

(2) TRV_{MTD} The Minimum Therapeutic Dose (MTD) approach? **Calculated value? Calculated value?** Data used? Data used? Limits? Limits?

(3) TTC

The Threshold of Toxicological Concern (TTC) approach?

(1) **TRV**_{Tox}

The Toxicity Reference Value (TRV) approach?

Calculated value? Toxicological approach based on NOAEL/LOAEL/BMDL

Data used?

Pharmaco-toxicological studies from the marketing authorization dossier or literature data

Limits?

lack of data, especially in the case of metabolites and old molecules

(2) TRV_{MTD}

The Minimum Therapeutic Dose (MTD) approach?

Calculated value?

MTD used as the point of departure in assessing potential health hazards from pharmaceutical drug residues in drinking water

Data used? From the marketing authorization dossier

Limits?

Cannot be generalised, especially to certain families of molecules (cytotoxic agents, hormones, allergens, antibiotics, metabolites)

(3) TTC

The Threshold of Toxicological Concern (TTC) approach?

Calculated value?

Data used?

Limits?

(1) **TRV**_{Tox}

The Toxicity Reference Value (TRV) approach?

Calculated value? Toxicological approach based on NOAEL/LOAEL/BMDL

Data used?

Pharmaco-toxicological studies from the marketing authorization dossier or literature data

Limits?

lack of data, especially in the case of metabolites and old molecules

(2) TRV_{MTD}

The Minimum Therapeutic Dose (MTD) approach?

Calculated value?

MTD used as the point of departure in assessing potential health hazards from pharmaceutical drug residues in drinking water

Data used?

From the marketing authorization dossier

Limits?

Cannot be generalised, especially to certain families of molecules (cytotoxic agents, hormones, allergens, antibiotics, metabolites)

(3) TTC

The Threshold of Toxicological Concern (TTC) approach?

Calculated value?

0.15 µg/person/day (excess risk of 10⁻⁶) human exposure dose below which the risk is believed to be sufficiently low to exempt a substance from toxicological investigations Probabilistic approach based on the concept of structural similarity Data used? built from a database of known carcinogenic substances

Limits?

Only dedicated to substances for which there is no available data, but allows to be freed from the marketing authorization dossier and cover the uncertainties related to the carcinogenic properties

(1) **TRV**_{Tox}

The Toxicity Reference Value (TRV) approach?

Calculated value? Toxicological approach based on NOAEL/LOAEL/BMDL

Data used?

Pharmaco-toxicological studies from the marketing authorization dossier or literature data

Limits?

lack of data, especially in the case of metabolites and old molecules

(2) TRV_{MTD}

The Minimum Therapeutic Dose (MTD) approach?

Calculated value?

MTD used as the point of departure in assessing potential health hazards from pharmaceutical drug residues in drinking water

Data used?

From the marketing authorization dossier

Limits?

Cannot be generalised, especially to certain families of molecules (cytotoxic agents, hormones, allergens, antibiotics, metabolites)

(3) TTC

The Threshold of Toxicological Concern (TTC) approach?

Calculated value?

0.15 µg/person/day (excess risk of 10⁻⁶) human exposure dose below which the risk is believed to be sufficiently low to exempt a substance from toxicological investigations Probabilistic approach based on the concept of structural similarity Data used? built from a database of known carcinogenic substances

Limits?

Only dedicated to substances for which there is no available data, but allows to be freed from the marketing authorization dossier and cover the uncertainties related to the carcinogenic properties

PHARMACOLOGY -PHARMACOKINETICS

Table 2

Physico-chemical parameters of carbamazepine (Inchem 1999; US Pharmacopoeia, 2008).

CAS No.	298-46-4
ATC No.	NO3AF01
Chemical formula	C15H12N2O
Molecul ar weight	236.27 gmol ⁻¹
Presentation	White to yellowish-white crystalline powder
Solubility in water	112.1 mg/L
Vapour pressure	1.84 × 10 ⁻⁷ mm Hg (25 °C)
Melting point	190 to 193 °C
Henry's law constant	1.08 × 10 ⁻¹⁰ atm m ³ mol ⁻¹ (25 °C)
pKa	13.9
Log Kow	2.45

Carbamazepine metabolism

Trans-10,11-dyhydroxydiolcarbamazepine

O-glucuronides

TOXICOLOGY DATA

• Toxicity?

- Rats: LOAEL from 50 to 200 mg/kg/day
- Dogs: NOAEL from 50 to 100 mg/kg/day and LOAEL from 100 to 300 mg/kg/day
- Humans: LOAEL = 10 mg/kg/day
- Mutagenicity?
 - In vitro and in vitro studies: non-mutagenic
- Carcinogenicity?
 - Rats: a 2 years study in Sprague–Dawley rats at doses of 25, 75 and 250 mg/kg/day
 - increase in the incidence of hepatocellular tumours in females
 - benign testicular interstitial cell adenomas in males

_ starting at doses of 25 mg/kg/day

- NTP, IARC, FDA: not classified as carcinogenic
- Effects on reproduction function?
 - **Rats:** LOAEL from 192 to 250 mg/kg/day
 - Mice: NOAEL = 192 mg/kg/day
 - **Rabbits:** LOAEL = 250 mg/kg/day
 - Humans: LOAEL from 3 to 11 mg/kg/day

HEALTH RISK ASSESSMENT

Different methodological approaches for health risk assessment of drug residues in water intended for human consumption

• Reports from toxicity studies?

- Rats: LOAEL from 50 to 200 mg/kg/day
- Dogs: NOAEL from 50 to 100 mg/kg/day and LOAEL from 100 to 300 mg/kg/day
- Humans: LOAEL = 10 mg/kg/day
- Mutagenicity?
 - In vitro and in vitro studies: non-mutagenic
- Carcinogenicity?
 - Rats: a 2 years study in Sprague–Dawley rats at doses of 25, 75 and 250 mg/kg/day
 - increase in the incidence of hepatocellular tumours in females
 - benign testicular interstitial cell adenomas in males

_ starting at doses of 25 mg/kg/day

- NTP, IARC, FDA: not classified as carcinogenic
- Effects on reproduction function?
 - Rats: LOAEL from 192 to 250 mg/kg/day
 - Mice: NOAEL = 192 mg/kg/day
 - **Rabbits:** LOAEL = 250 mg/kg/day
 - Humans: LOAEL from 3 to 11 mg/kg/day

(1) Choices for TRV_{tox} calculation: Critical effect? Critical dose?

• Toxicity?

- Rats: LOAEL from 50 to 200 mg/kg/day
- Dogs: NOAEL from 50 to 100 mg/kg/day and LOAEL from 100 to 300 mg/kg/day
- Humans: LOAEL = 10 mg/kg/day
- Mutagenicity?
 - In vitro and in vitro studies: non-mutagenic
- Carcinogenicity?
 - Rats: a 2 years study in Sprague–Dawley rats at doses of 25, 75 and 250 mg/kg/day
 - increase in the incidence of hepatocellular tumours in females
 - benign testicular interstitial cell adenomas in males

_ starting at doses of 25 mg/kg/day

- NTP, IARC, FDA: not classified as carcinogenic
- Effects on reproduction function?
 - Rats: LOAEL from 192 to 250 mg/kg/day
 - Mice: NOAEL = 192 mg/kg/day
 - **Rabbits:** LOAEL = 250 mg/kg/day
 - Humans: LOAEL from 3 to 11 mg/kg/day

(1) Choices for TRV_{tox} calculation: Critical effect: on reproduction function Critical dose: 3 mg/kg/day (200 mg/day)

```
(1) Choices for TRV<sub>tox</sub> calculation:
Critical effect: on reproduction function
Critical dose:
LOAEL = 3 mg/kg/day (200 mg/day)
Uncertainty Factors?
```


Insufficiency

```
(1) Choices for TRV<sub>tox</sub> calculation:
Critical effect: on reproduction function
Critical dose:
LOAEL = 3 mg/kg/day (200 mg/day)
Uncertainty Factors:
Global UF = 900
```


 $UF_1 = 3$ $UF_s = 1$ Short-term to LOAEL-to-NOAEL long-term exposure $UF_{H} = 3$ $UF_{\Delta} = 1$ **Average Human to Animal to Human Sensitive Human** $UF_{D} = 10$ MF = 10Database **Modifying Factor** Insufficiency

DWEL ? adults		
DWEL ? children		
MOE ? adults		
MOE ? children		

	TRV _{Tox} x BW	3.3 x 10 ³ x 60	(ng/kg/day) x kg =	= 99 x 10 ³ ng / L	
adults	IR	2	L/day		
	TRV _{Tox} x BW	3.3 x 10 ³ x 16,7	_ (ng/kg/day) x kg	= 55 x 10 ³ ng / L	
DWEL = — children	IR	1	L/day		

MOE ?

adults

MOE ?

children

	TRV _{Tox} x BW	3.3 x 10 ³ x 60	(ng/kg/day) x kg	= 99 x 10 ³ ng / l					
adults	IR	2	L/day	55 x 16 118 /	-				
	TRV _{Tox} x BW	3.3 x 10 ³ x 16,7	(ng/kg/day) x kg	= 55 x 10 ³ ng /	'L				
children	IR	1	L/day		-				
MOF	DWEL adult	99,000	ng/L	= 3000					
adults	C _{CBZ}	33	ng/L		ΜΟΕ ςα	Iculated	from D	W/FL au	nd
MOF	DWEL children	55,000	(ng/kg/day) x kg	= 1667	carbamazepine (CBZ) conce		oncenti	ration	
children	C _{CBZ}	33	L/day	2007	found in WICH following the TRV toxicological approach			RV	
		Metho	ods			DWEL (1	ng/L)	Margins exposur	s of e (MOE)
						Adults	Children	Adults	Children
Measured co WIHC = 3	ncentration of carbamaz 3 ng/L	zepine in Toxici	ty reference value based on	toxicological data (T	RV _{Tox})	99,000	55,000	3000	1667

 (2) Choices for TRV_{MTD} calculation:
 Critical dose? MTD: 10 mg/kg/day For both adults and children (French Health Products Safety Agency, 2011)

Uncertainty Factors?

UF_D? Database Insufficiency MF? Modifying Factor

 (2) Choices for TRV_{MTD} calculation:
 Critical dose? MTD: 10 mg/kg/day For both adults and children (French Health Products Safety Agency, 2011)
 Uncertainty Factors?

Global UF = 810

TRV_{MTD}?

 $UF_1 = 3$ $UF_s = 3$ Short-term to LOAEL-to-NOAEL long-term exposure $UF_{H} = 3$ $UF_{\Delta} = 1$ **Average Human to Animal to Human Sensitive Human** $UF_{D} = 3$ MF = 10Database **Modifying Factor**

Insufficiency

DWEL ? adults			
DWEL ? children			
MOE ? adults			
MOE ? children			

children

DWEL =	$WEL = \frac{TRV_{tox} x BW}{IP} = \frac{12.3 x 10^3 x}{2}$		= (ng/kg/day) x kg	= 369 x 10 ³ ng /	Ĺ				
adults DWEL =	TRV _{tox} x BW	2 12.3 x 10 ³ x 16,7	(ng/kg/day) x kg	= 206 x 10 ³ ng /	L				
children	IR DWEL adult	1 369,000	L/day ng/L	- 11 182					
MOE = adults	C _{CBZ} =	33 206,000	=ng/L (ng/kg/day) x kg	= 6243	MOE calculated from DWEL and carbamazepine (CBZ) concentration found in WICH following the				
children	C _{CBZ}	33	L/day		derivation of the TRV tox approach using the MTD		toxicol TD app	oxicological TD approach	
		Me	ethods		DWEL	(ng/L)	Margins exposur	of e (MOE)	
					Adults	Children	Adults	Children	
Measured co WIHC = 3	oncentration of carbamaze 3 ng/L	epine in To: (TF	xicity reference value based on RV _{MTD})	minimum therapeutic	dose 369,00	0 206,000	11,182	6243	

DWEL ? adults

DWEL? children

MOE ? adults

MOE ? children TTC = 2.5 x $10^{-3} \mu g/kg/day$

A person corresponds to an adult of 60 kg

TTC IS A CONSERVATIVE APPROACH TTC = 2.5 ng/kg/day TRV_{Tox} = 3300 ng/kg/day TRV_{RTD} = 12,300 ng/kg/day

(3) TTC

The Threshold of Toxicological Concern (TTC) approach?

Calculated value?

0.15 μg/person/day (excess risk of 10⁻⁶) human exposure dose below which the risk is believed to be sufficiently low to exempt a substance from toxicological investigations

Probabilistic approach based on the concept of structural similarity Data used?

built from a database of known carcinogenic substances Limits?

Only dedicated to substances for which there is no available data, but allows to be freed from the marketing authorization dossier and cover the uncertainties related to the carcinogenic properties

	TTC x BW	2.5 x 60	(ng/kg/day) x kg	= 75 ng / L
adults	IR	2	L/day	
	TTC x BW	2.5 x 16,7	= (ng/kg/day) x kg	= 41.7 ng / L
children	IR	1	L/day	

MOE ?

adults

MOE ?

children

	TTC x BW	2.5 x 60	_ (ng/kg/day) x kg	= 75 ng /	
DWEL = adults	= IR	2	L/day	- / J lig /	
	TTC x BW	2.5 x 16,7	(ng/kg/day) x kg	= 41 7 ng	/1
DWEL = - children	= IR	1	= L/day		/ -
	DWEL adult 75		ng/L	= 2 3	
MOE = adults	C _{CBZ} =	33	ng/L	- 2.3	
MOF	DWEL children	41.7	_ (ng/kg/day) x kg	= 1.3	MOE calculated from DWEL and
children	C _{CBZ} =	33	L/day	1.0	carbamazepine (CBZ) concentration found in WICH following the TTC approach
		Met	hods		DWEL (ng/L) Margins of exposure (MOE)
					Adults Children Adults Children
Measured co WIHC = 3	ncentration of carbamaze 3 ng/L	epine in			
		Thre	shold of toxicological concern	n (TTC)	75 41.7 2.3 1.3

HRA for the metabolite EP-CBZ?

	TTC x BW	2.5 x 60	(ng/kg/day) x k	^{kg} = 75 n	= 75 ng / I			
DWEL = adults	= IR	2	L/day		5/ -			
	TTC x BW	2.5 x 16,7	(ng/kg/day) x k	^{kg} = 41 7	- 11 7 ng / l			
DWEL = - children	= IR	1	L/day					
	DWEL adult	75	ng/L	= 12 5				
MOE = Adults	C _{CBZ} =	6 41.7	ng/L (ng/kg/day) x k		MOE calculated fr epoxycarbamazep	om DWEL an bine (EP-CBZ)	nd 10,11- concentration	
MOE = children	= C _{CBZ}	6	= L/day	= /	found in WICH following the TTC approach			
cinici ci					Methods	DWEL (ng/L)	Margins of exposure (MOE)	
						Adults Children	n Adults Children	
			Me	asured concen 10,11- epoxycarbama WIHC = 6 ng/L	tration of Threshold of toxicological zepine in concern (TTC)	75 41.7	12.5 7	

DISCUSSION AND CONCLUSIONS

- The TRV_{Tox} approach should be retained as long as the marketing authorization dossier data are available. A derivation of the TRV_{Tox} approach involving the use of MTD may be used as a point of departure if the toxicological data are missing. However, it cannot be generalised to substances such cytotoxic agents, allergens, antibiotics, hormones and metabolites. The TTC approach can only be used in last line and must be reserved to substances for which there is no available data e.g. for certain metabolites.
- For all approaches used, the MOE indicate that there is no appreciable risk to human health exposure to carbamazepine and its major metabolite.
- The exposure scenarios should take into account the cumulative amounts of these chemicals via both WIHC and fish consumption for a more relevant health hazard evaluation.
- The authors underline the importance of testing the effects of mixtures of pharmaceuticals because drug residues often occur as mixtures and not as single contaminants after entering wastewaters.