QCM

GEI blanc

Aucun document n'est autorisé. L'usage de la calculatrice est interdit. Les questions sont par défaut posées au pluriel mais il peut y avoir 0, 1 ou plusieurs réponses.

Question 1 \clubsuit La fonction $f: x \mapsto \frac{x-2}{x+1}$ vérifie est telle que :

- $\boxed{\mathbf{A}} \ f:]-1, +\infty[\longrightarrow \mathbb{R} \ \text{est surjective}.$
- B f est convexe sur $]-1,+\infty[$.
- L'équation f(x) = -2 a une unique solution sur \mathbb{R} privé de -1.
- f est concave sur $]-1,+\infty[$.
- $f:]-1,+\infty[\longrightarrow]-\infty,1[$ est bijective.

Question 2 \clubsuit La matrice $\begin{pmatrix} -1 & 2 & 1 \\ 0 & 5 & 0 \\ 1 & 2 & -1 \end{pmatrix}$ a pour valeurs propres.

- -2, 5, 0
- $\boxed{\mathrm{B}} -2, 1, 3$
- C -2, 5
- D -1, 3, 0
- [E] -2, 0, 3

Question 3 \clubsuit La fonction $f: x \mapsto x|x|$ définie sur \mathbb{R} est.

- continue sur \mathbb{R}
- de classe C^1 sur \mathbb{R}
- dérivable sur \mathbb{R}
- \square bornée sur $\mathbb R$
- impaire

Question 4 \$\\\$ Soit f la fonction $f: x \mapsto \frac{e^{-x}}{\sqrt{|x|}}$. Alors

- \triangle $\int_{-\infty}^{-1} f(t)dt$ converge
- $\prod \int_0^1 f(t)dt$ converge

Question 5 \clubsuit Soient les séries entières $\sum \sin(n)x^n$ et $\sum \frac{x^n}{n^2}$. Quelles réponses sont vraies?

- Les deux séries ont le même rayon de convergence.
- Ces deux séries convergent sur]-1,1[.
- $\boxed{\mathbf{C}}$ Au moins une des deux séries converge sur]-2,2[.
- $\boxed{\mathrm{D}}$ Ces deux séries convergent sur [-1,1].
- Au moins une des deux séries converge sur [-1,1].

Question 6 \clubsuit La probabilité pour une famille d'avoir un garçon pour premier enfant est $\frac{1}{2}$, celle d'avoir une fille $\frac{1}{2}$. Si on a un garçon au premier enfant, la probabilité d'avoir une fille au second est $\frac{1}{4}$. Si on a une fille au premier enfant, celle d'avoir une fille second est $\frac{2}{3}$. On note N_G la variable aléatoire donnant le nombre de garçons

- $\boxed{\mathbf{A}}$ La probabilité d'avoir deux filles est strictement supérieure à $\frac{1}{3}$
- $E(N_G) > 1$
- La probabilité d'avoir un garçon comme premier enfant sachant que la famille a une fille comme deuxième enfant est de $\frac{3}{11}$
- La probabilité d'avoir au moins une fille est supérieure à $\frac{1}{2}$
- E On a plus de chances d'avoir au moins une fille que d'avoir au moins un garçon.

Question 7 \clubsuit On considère l'endomorphisme de \mathbb{R}^3 , $f:(x,y,z)\mapsto (3x+y,x-y+z,4x+z)$. Alors

- A le noyau est de dimension 2 et l'image de dimension 2
- $\boxed{\mathbf{B}}$ f est surjective.
- le noyau est de dimension 1 et l'image de dimension 2
- |D| f est injective.
- E le noyau est de dimension 2 et l'image de dimension 1

Question 8 \clubsuit Soit $p \in]0,1[, X, Y]$ deux variables aléatoires indépendantes telles que X suit une loi binomiale de paramètres (5,p) et Y une loi binomiale de paramètres (4,1-p).

- A Il existe une valeur de p telle que Var(4X) = Var(5Y).
- Il existe une valeur de p telle que E(4X) = E(5Y).
- C $\forall p \in]0, 1[, P(X + Y = 0) = P(X + Y = 9).$
- Pour toute valeur de p, $E(X+Y) \ge 2$
- [E] Pour toute valeur de p, $Var(X+Y) \ge 2$

Question 9 \clubsuit Soit l'équation différentielle : y' - y = 1.

- Il existe une solution de cette équation qui est concave sur \mathbb{R} .
- $\boxed{\mathrm{B}}$ Toute solution de cette équation est concave sur \mathbb{R} .
- $\overline{\mathbb{C}}$ Toute solution f vérifie $\lim_{t \to +\infty} f(t) = +\infty$
- Toute solution f vérifie $\lim_{t \to -\infty} f(t) = -1$
- Si une solution f vérifie f(0)=0 alors $\lim_{t\to +\infty}f(t)=+\infty$

Question 10 \clubsuit L'intégrale multiple $\iint_D \sin(x+y) dx dy$ où $D = \{(x,y) \in \mathbb{R}^2_+ | x+y \leqslant \pi\}$ vaut

- $A 2\pi$
- $\boxed{\mathrm{B}} \pi$
- $\boxed{\mathbf{C}} \int_0^{\pi} 1 + \sin(x) dx$
- π

Question 11 \clubsuit Soit la suite définie pour tout n entier naturel par $u_{n+1} = \frac{1}{2}u_n - 2$

- Si $u_0 > -4$, (u_n) est décroissante.
- B Si $u_0 > -4$, (u_n) est croissante.
- (u_n) converge
- (u_n) est bornée
- $\boxed{\mathbf{E}} \lim_{n \to +\infty} u_n = 0$

Question 12 \clubsuit Soient a et b deux nombres réels avec a>1 et b>1. La valeur de l'intégrale $\int_a^b \frac{1}{x \ln(x)} dx \text{ est}$

- A on ne peut pas calculer explicitement cette intégrale
- $\boxed{\mathbf{B}} \ \frac{1}{b\ln(b)} \frac{1}{a\ln(a)}$
- $\boxed{\mathbf{C}} \frac{\ln(b)}{\ln(a)} \frac{\ln(a)}{\ln(b)}$
- $\boxed{\mathrm{D}} \ln(b) \ln(a)$

Question 13 \clubsuit Soit $P(x) = 2x^4 - x^3 - 4x^2 + 3x$. Le nombre de racines réelles deux à deux distinctes est

- 4
- B 1
- C 0
- D 2

Question 14 \clubsuit Pour combien de valeurs réelles de m le vecteur (m, 1, 1) est-il une combinaison linéaire des vecteurs (-1, -m, -1), (-1, -1, -m)?

- A une valeur
- B aucune valeur
- deux valeurs
- D toutes les valeurs
- E trois valeurs

Question 15 . Vous jetez un dé non pipé, et le résultat obtenu (entre 1 et 6) détermine le nombre de fois que vous lancez une pièce de monnaie équilibrée. La probabilité d'obtenir à chaque fois pile est

$$\boxed{A} \frac{1}{2} + (\frac{1}{2})^2 + \ldots + (\frac{1}{2})^6$$

$$\boxed{\mathbf{B}} \ (\frac{1}{2})^{7/2}$$

$$\boxed{\text{C}} (\frac{1}{2})^6$$

$$\mathbb{E} \frac{1}{6}$$

Question 16 \clubsuit Soit $g: \mathbb{R}_+ \to \mathbb{C}$ une application continue. La fonction $x \in \mathbb{R}_+, f(x) = \int_0^x \sin(u)g(x-u)du$ est une solution de l'équation différentielle sur \mathbb{R}_+

$$\boxed{\mathbf{A}} \ y' = g(0)\sin(x)$$

$$\boxed{\mathrm{B}} \sin(x)y' - \cos(x)y = \sin(x)g(x)$$

$$\boxed{\mathbb{C}}$$
 si g n'est pas dérivable, f non plus en général

$$y'' + y = g(x)$$

$$\boxed{\mathrm{E}} \cos(x)y' + \sin(x)y = \cos(x)g(x) - g(0)$$

Question 17 \clubsuit Soit A une matrice complexe $n \times n$ $(n \ge 2)$ et soit $B = A^2$. Quelle est parmices propositions la seule qui est fausse?

$$\boxed{\mathbf{A}}$$
 A diagonale \Longrightarrow B diagonale

$$B$$
 diagonale $\Longrightarrow A$ diagonalisable

$$\fbox{C}\ \mu\in\mathbb{C}$$
 valeur propre de $A\Longrightarrow\mu^2$ valeur propre de B

$$\boxed{\mathbb{D}}\ A$$
 diagonalisable $\Longrightarrow B$ diagonalisable

$$\fbox{E}\ \lambda=\mu^2\in\mathbb{C}$$
 valeur propre de $B\Longrightarrow\mu$ ou $-\mu$ (ou μ et $-\mu)$ valeur(s) propre(s) de A

Question 18 \clubsuit Le module et un argument du nombre complexe $(1-2i)^2(1+7i)\exp(-2\ln(5)+i\frac{\pi}{3})$ sont donnés par

$$A = 5, -\pi/12$$

$$\boxed{\mathrm{B}} \ \sqrt{2}, 7\pi/12$$

$$\sqrt{2}, \pi/12$$

$$\boxed{\text{D}} 5\sqrt{2}, 0$$

$$oxed{E}$$
 5, $7\pi/12$

Question 19 \clubsuit La matrice $\begin{pmatrix} 2 & a & 0 \\ -1 & 1 & b \\ 3 & 0 & 1 \end{pmatrix}$ admet le vecteur $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ comme vecteur propre

$$\boxed{\mathbf{A}}$$
 pour une infinité de paires (a,b) .

$$oxed{B}$$
 pour aucune paire (a,b) .

$$\boxed{\mathbf{C}}$$
 exactement quand $(a,b)=(1,5)$

$$\boxed{\mathrm{D}}$$
 exactement quand $a^2=1$ et $b^2=25$

exactement quand
$$(a, b) = (1, 7)$$

Question 20 Le DL à l'ordre 5 en 0 de $\frac{1}{x^2} \ln(\frac{1}{1-x^2})$

$$\boxed{\mathbf{A}} \ x^4.$$

$$\boxed{B} \ 1 + \frac{x^2}{2} + \frac{x^4}{4}.$$

$$C x + \frac{x^3}{2} + \frac{x^5}{3}$$

$$1 + \frac{x^2}{2} + \frac{x^4}{3}$$

$$\begin{array}{c}
2 & 4 \\
\hline
C & x + \frac{x^3}{2} + \frac{x^5}{3} \\
\hline
 & 1 + \frac{x^2}{2} + \frac{x^4}{3} \\
\hline
E & \frac{1}{x^2} + 1 + x^2 + x^4
\end{array}$$

CORRECTION