Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

I. Approche numérique de la thermodynamique statistique

I.1 Limitations de l'approche analytique

• Fonction de partition dans l'ensemble canonique :

$$Q(N,V,T) = \frac{1}{\Lambda^{3N} N!} \qquad \iiint \exp\left(-\frac{\mathcal{V}\left(\overrightarrow{r^{N}}\right)}{k_{\rm B}T}\right) d\overrightarrow{r^{N}} = \frac{1}{\Lambda^{3N} N!} Z_{N}$$

- Dans un système réel, \mathcal{V} non séparable en termes mono-particulaires
- Même avec potentiels de paires simples (van der Waals), nécessité d'approximations :
 - o Approche de champ moyen
 - o Théorie des perturbations

M1FJC

• Approche alternative : estimation numérique de la fonction de partition ou des grandeurs thermodynamiques

I. Approche numérique de la thermodynamique statistique

I.1 Limitations de l'approche analytique

• Simulation vs. Théorie :

- Simulation (numérique) ≠ Théorie (analytique)
- Description possible d'interactions plus détaillées
- o Approximations non nécessaires : permet de valider la théorie
- Lien Théorie / Expérience / Simulation :

I. Approche numérique de la thermodynamique statistique

I.1 Limitations de l'approche analytique

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

I.2 Approche numérique directe

• Calcul d'une propriété thermodynamique *A* par une moyenne d'ensemble :

$$A = \langle a(\vec{r}, \vec{p}) \rangle = \iiint a(\vec{r}, \vec{p}) \mathcal{P}(\vec{r}, \vec{p}) \, d\vec{r} d\vec{p} = \sum_{i} a(\mathcal{C}_{i}) \mathcal{P}(\mathcal{C}_{i})$$

• Ensemble canonique :

$$\mathcal{P}_{NVT}(\vec{r},\vec{p}) = \frac{\exp(-\beta E(\vec{r},\vec{p}))}{Q(N,V,T)}$$

$$\mathcal{P}_{NVT}(\vec{r}) = \frac{\exp(-\beta \mathcal{V}(\vec{r}))}{Z_N}$$

- Approche numérique directe exhaustive :
 - o Modélisation de tous les micro-états du système
 - Pour chaque micro-état, calcul de :
 - × Sa probabilité
 - × La propriété a

M1FJC

• Sommation pour tous les micro-états pour obtenir *A*

I.2 Approche numérique directe

- Système 2 particules / 2 états dans l'ensemble canonique :
 - Modélisation de tous les micro-états : \bigcirc

Probabilité d'un micro-état :

 $Q(N, V, T) = \exp(-\beta E_{1,1}) + \exp(-\beta E_{1,2}) + \exp(-\beta E_{2,1}) + \exp(-\beta E_{2,2})$ $\mathcal{P}(i,j) = \exp(-\beta E_{i,j}) / Q(N,V,T)$

- \circ Calcul de A : $A = a(1,1)\mathcal{P}(1,1) + a(1,2)\mathcal{P}(1,2) + a(2,1)\mathcal{P}(2,1) + a(2,2)\mathcal{P}(2,2) = \sum_{i} \sum_{j} a(i,j)\mathcal{P}(i,j)$
 - Système 100 particules / 2 états :

- Nombre de micro-états : $2^{100} \simeq 1, 3.10^{30} \parallel$ Ο
- Nécessité de se limiter à un nombre restreint de microétats (échantillon) Ο

I.2 Approche numérique directe

• Calcul numérique approché :

- Etude d'un nombre *M* limité de micro-états C_m pris au hasard
- Calcul approché de la probabilité des micro-états :

$$\tilde{\mathcal{P}}(\mathcal{C}_m) \simeq \frac{\exp(-\beta E_m)}{\sum_{k=1}^{M} \exp(-\beta E_k)}$$

• Calcul d'une estimation de la propriété :

$$\tilde{A} \simeq \sum_{m=1}^{M} a(\mathcal{C}_m) \, \tilde{\mathcal{P}}(\mathcal{C}_m)$$

• Problèmes :

- *M* doit être suffisamment grand pour que l'estimation soit raisonnable et « reproductible »
- Origine du problème : la plupart des micro-états ont une contribution négligeable

I. Approche numérique de la thermodynamique statistique

I.3 Les méthodes de simulation moléculaire

- Objectif des méthodes de simulation moléculaire
 - Ne faire des calculs que pour les micro-états « hautement » probables qui ont une contribution significative dans le calcul des moyennes
 - Principe : construire un échantillon représentatif de la loi de distribution $\mathcal{P}(\mathcal{C}_m)$
 - Calcul de la grandeur thermodynamique par une moyenne arithmétique simple :

$$\tilde{A} \simeq \frac{1}{M} \sum_{m=1}^{M} a(\mathcal{C}_m)$$

Il n'y a plus de $\mathcal{P}(\mathcal{C}_m)$

I.3 Les méthodes de simulation moléculaire

• Système à 2 configurations C_1 et C_2

$$E(\mathcal{C}_1) = k_{\rm B}T$$

$$\mathcal{P}(\mathcal{C}_1) = \frac{e^{-1}}{e^{-1} + e^{-2}} \simeq 73\%$$

$$\mathcal{P}(\mathcal{C}_2) = \frac{e^{-2}}{e^{-1} + e^{-2}} \simeq 27\%$$

 $U = \langle E \rangle = E_1 \mathcal{P}(\mathcal{C}_1) + E_2 \mathcal{P}(\mathcal{C}_2) = 0,73 \times k_{\rm B}T + 0,27 \times 2k_{\rm B}T = 1,27k_{\rm B}T$

- Calcul numérique de l'énergie moyenne :
 - Echantillonnage aléatoire de 1000 configurations :
 - ★ 502 configurations C_1 et 498 configurations C_2
 - Probabilité de chacune des configurations C_m

$$\begin{split} \tilde{\mathcal{P}}(\mathcal{C}_m) &\simeq \frac{e^{-\beta E_m}}{502e^{-1} + 498e^{-2}} \\ \tilde{\mathcal{P}}(\mathcal{C}_m = \mathcal{C}_1) &\simeq 1,46.10^{-3} \\ \tilde{\mathcal{P}}(\mathcal{C}_m = \mathcal{C}_2) &\simeq 5,38.10^{-4} \end{split}$$

 $\tilde{U} = \sum_{m=1}^{\infty} E(\mathcal{C}_m) \tilde{\mathcal{P}}(\mathcal{C}_m) = 502 \times 1,46.10^{-3} \times k_{\rm B}T + 498 \times 5,38.10^{-4} \times 2k_{\rm B}T \simeq 1,27k_{\rm B}T$

- o Echantillonnage selon la loi de distribion $\mathcal{P}(\mathcal{C})$:
 - **×** 727 configurations C_1 et 273 configurations C_2
 - Moyenne approchée de l'énergie moyenne :

$$\widetilde{U} = \frac{1}{M} \sum_{m=1}^{M} E(\mathcal{C}_m) = \frac{727 \times k_{\rm B}T + 273 \times 2k_{\rm B}T}{1000} \simeq 1,27k_{\rm B}T$$

I. Approche numérique de la thermodynamique statistique

I.3 Les méthodes de simulation moléculaire

- Objectif des méthodes de simulation moléculaire :
 - Ne faire des calculs que pour les micro-états « hautement » probables qui ont une contribution significative dans le calcul des moyennes
 - Principe : construire un échantillon représentatif de la loi de distribution $\mathcal{P}(\mathcal{C}_m)$
 - Calcul de la grandeur thermodynamique par une moyenne arithmétique simple :

$$\tilde{A} \simeq \frac{1}{M} \sum_{m=1}^{M} a(\mathcal{C}_m)$$

- Exemples de méthodes de simulation moléculaire :
 - Méthode de Monte Carlo
 - o Dynamique Moléculaire

3. L'échantillonnage de la SEP : les méthodes

M configurations

Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

II. Représentation d'un système moléculaire

II.1 Les différentes échelles de description

- Description de la matière au niveau électronique (QM) :
 - Prise en compte explicite des électrons et des noyaux
 - o Mécanique quantique
- Description au niveau atomique (MM) :
 - Matière composée d'atomes et molécules (électrons pris en compte seulement de manière effective)
 - o Mécanique classique (Newtonienne) ponctuelle
- Description au niveau mésoscopique (CG) :
 - Matière constituée de « gros grains »
 - Mécanique de Langevin
- Description au niveau macroscopique :
 - Matière « continue »

M1FJC

• Mécanique des milieux continus

M1FJC

II.1 Les différentes échelles de description

- Un processus/propriété physico-chimique correspond à une échelle de temps et d'espace
- Un processus nécessite la prise en compte de tout ou partie des degrés de liberté du système

M1FJC

II.1 Les différentes échelles de description

 Les différentes descriptions moléculaires sont associées à différentes échelles de temps et d'espace accessibles

F.R. Hung, K.E. Gubbins, and S. Franzen, Chemical Engineering Education, Fall 2004

• Plus le niveau de description est précis, plus les calculs seront longs

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

II.1 Les différentes échelles de description

Niveau de représentation	Calcul de l'énergie	Avantages	Inconvénients
Ab initio Noyaux, électrons	Résolution de l'équation de Schrödinger	 Rupture/formation de liaisons Contrôle du degré de précision A priori exact 	 N < 100-1000 atomes T < 10 ps
Semi-empirique Noyaux, électrons de valence	Simplification des méthodes ab initio par l'introduction de paramètres	 Rupture/formation de liaisons T → 10 ns 	 Qualité du calcul difficile à évaluer a priori Paramètres adaptés à un problème particulier
Mécanique Moléculaire Atomes	Expression classique de l'énergie	 N → 10⁶ atomes T → 1 µs Nombreuses quantités thermo accessibles 	 Pas de réactivité Précision limitée
Echelle mésoscopique « groupes » d'atomes	Expression « simplifiée » de l'énergie	 N → 10⁹ particules T → seconde Organisation macromoléculaire (micellisation, repliement) 	 Perte de la structure fine moléculaire Souvent qualitatif

II.1 Les différentes échelles de description

- Le choix de la description du système moléculaire dépend :
 - De la question à laquelle on souhaite répondre :
 - \star Réactivité chimique \rightarrow QM nécessaire car plusieurs états électroniques
 - Calcul de propriétés thermophysiques → MM souvent préférable car meilleur échantillonnage (plus de configurations peuvent être modélisées)
 - De la capacité de calcul disponible
- Quand plusieurs choix sont possibles, il y a un compromis à faire entre :
 - Précision de chaque calcul de l'énergie
 - Nombre de calculs réalisés
- Au final :

- Il n'y a pas toujours de réponse unique
- o Compromis précision / statistique

II.2 Représentation à l'échelle atomique

- Description classique :
 - Positions : $\vec{r} = (\vec{r_1}, \vec{r_2}, ..., \vec{r_N})$
 - Impulsions : $\vec{p} = (\overrightarrow{p_1}, \overrightarrow{p_2}, ..., \overrightarrow{p_N})$
- Approximation de Born-Oppenheimer
- Définitions :
 - Espace des phases : ensemble des microétats définis par {r, p}
 (Dynamique Moléculaire)
 - Espace des configurations : ensemble des configurations spatiales $\{\vec{r}\}$ (Monte Carlo)
 - Surface d'énergie potentielle (SEP ou PES) : énergie potentielle du système en fonction des coordonnées \vec{r} des particules
 - O Un point de l'espace des configurations ↔ un point sur la SEP

II. Représentation d'un système moléculaire

II.3 Les champs de forces

• Mécanique moléculaire :

- Description d'une molécule = atomes connectés entre eux
- o Les liaisons ne peuvent pas être rompues

• Notion de type d'atomes :

- Un atome est décrit par un ensemble de paramètres (charges partielles, longueurs de liaison avec les voisins,...) qui décrit ses interactions avec les autres atomes
- o Le type d'atomes dépend de l'environnement chimique de l'atome
- Le nombre de type d'atomes défini dépend d'un choix fait a priori

M1FJC

II.3 Les champs de forces

• Décomposition de l'énergie en une somme de termes avec une expression analytique simple:

 Utilisation fréquente de potentiels de paires pour les interactions entre atomes « non-liés » :

- Avantages : temps de calcul réduit, énergie et forces additives (analyse de sous-parties du système / parallélisation des calculs)
- D'autres termes peuvent être rajoutés pour décrire des interactions « fines »

II. Représentation d'un système moléculaire

II.3 Les champs de forces – Interactions électrostatiques

- La densité électronique portée par les atomes est représentée par un jeu de charges partielles
- Interaction entre atomes séparés d'au moins 3 liaisons
- Les charges partielles interagissent suivant un potentiel Coulombien :

$$V_{el}(r) = \frac{q_i \, q_j}{4\pi\varepsilon_0 r}$$

- Interaction à longue portée > 20 Å
- Détermination des charges partielles à partir de calculs de chimie quantique :
 - Schémas de population (Mulliken,...)

M1FJC

 Reproduction du potentiel électrostatique créé par une molécule

II. Représentation d'un système moléculaire

II.3 Les champs de forces – interactions de dispersion-répulsion

Ε

0

'dis1

σ

Vrep

 V_{el}

 V_{LI}

- Interactions de dispersion :
 - Interactions attractives dipôles induits-dipôles induits Ο
 - Fait partie des interactions de van der Waals (int. de London) Ο

$$V_{disp}(r) = -\frac{C}{r^6}$$

- Courte portée < 15 Å Ο
- Ordres de grandeur : ~1-10 kJ.mol⁻¹
- Interactions répulsives :
 - Non-interpénétrabilité des nuages électroniques Ο
 - Très courte portée Ο

M1FJC

Expression empirique : Ο

$$V_{rep}(r) = \frac{A}{r^{12}}$$
 ou $V_{rep}(r) = \exp(-\alpha r)$
teractions formellement regroupées : $V_{LJ}(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$

Interactions formellement regroupées :

II.3 Les champs de forces – potentiel intramoléculaire de liaison

- Potentiel de Morse
 - o Plus précis
 - Plus cher en temps de calcul
 - Description du minimum du potentiel équivalente
- En pratique : le plus souvent approximation harmonique
 - Deux paramètres k_{ij} et r_{ij}^0 qui dépendent du type de la liaison
 - o Calibration : données RX et IR

II.3 Les champs de forces – potentiels intramoléculaires angulaires

• Énergie angulaire :

$$E_{angle} = k_a \big(\theta_a - \theta_{0,a}\big)^2$$

- Énergie de torsion : variation énergétique lors de la rotation autour de la liaison B-C dans une séquence A-B-C-D.
- Fonction périodique
- Décomposition en une somme de termes sinusoïdaux : 4

$$E_{torsion} = \sum_{n=1}^{N} \frac{V_n}{2} [1 + \cos(n\varphi - \delta)]$$

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

II.3 Les champs de forces

• Transférabilité :

- Utilisation des paramètres d'un atome déjà connu pour les utiliser pour un atome dans une nouvelle molécules
- Relié aux performances de prédiction

• Compromis à trouver entre :

- Reproduction « précise » des propriétés d'une molécule
- Reproduction « en moyenne » des propriétés d'un ensemble de molécules

• Signification de l'énergie :

- L'énergie est calculée par rapport à une référence où les paramètres géométriques correspondraient à une valeur de référence
- Seules les différences d'énergie MM entre deux configurations ont un sens

II.3 Les champs de forces – dans quels cas ?

- Champs de force « classiques » : électrons traités implicitement
 - Pas de rupture/formation de liaison
 - Pas de transferts de charges (charges des atomes « figées »)
- Applications limitées à des propriétés pour lesquelles la réorganisation du nuage électronique joue un faible rôle
- Exemples :

Énergie de torsion dans le butane Énergie conformationnelle

Eau adsorbée à une surface Énergie potentielle intermoléculaire

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

II.3 Les champs de forces – Avantages/Limitations

• Avantages :

- Relativement « bon marché » en temps de calcul (vs. Chimie quantique)
- Possibilité d'étudier des systèmes complexes
- Echantillonnages / Temps accessibles plus importants qu'avec la mécanique quantique (mais toujours limités)

• Désavantages :

- o électrons considérés seulement de façon effective (via la valeur des paramètres)
- o pas de rupture de liaison ou d'étude d'états excités \rightarrow pas de réactivité chimique
- Peut-on pallier les limitations des champs de force « classiques » ?
 - Champs de forces polarisables ou réactifs (plus coûteux en temps de calcul)
 - Approche hybride QM/MM
 - A l'autre échelle de temps ou de taille : approche « gros grains »

II.3 Les champs de forces – approche hybride QM/MM

- Dans une même simulation :
 - o Une petite partie du système traitée au niveau quantique
 - Le reste est traité au niveau MM

Michael Levitt

```
Arieh Warshel
```

- Rupture/formation de liaisons possibles dans la partie QM du système
- Dynamique globale de la partie MM
- Fait partie de la famille des méthodes « multi-échelles »

II.3 Les champs de forces – approche hybride QM/MM

• Transfert d'électron dans le cryptochrome

Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

III.1 Calcul d'une intégrale par la méthode de Monte Carlo

- Calcul d'une propriété thermodynamique = calcul d'intégrales $A = \langle a(\vec{r}) \rangle = \iiint a(\vec{r}) \mathcal{P}(\vec{r}) d\vec{r} = \frac{\iiint a(\vec{r}) \exp(-\beta E(\vec{r})) d\vec{r}}{\iiint \exp(-\beta E(\vec{r})) d\vec{r}}$
- Comment calcule-t-on numériquement une intégrale ?
- Méthode des rectangles :

$$I = \int_{a}^{b} f(x) dx$$

M1FJC

- Echantillonnage de f(x) sur une grille uniforme
- Estimation de la valeur de I :

$$I \simeq \sum_{i=1}^{M} f(x_i) \Delta \mathbf{x} = (b-a) \times \frac{1}{M} \sum_{i=1}^{M} f(x_i) = (b-a) \times \overline{f(x)} a$$

• Valeur d'autant plus précise que *M* est grand

III.1 Calcul d'une intégrale par la méthode de Monte Carlo

- Calcul d'une intégrale par la méthode de Monte Carlo : échantillonnage aléatoire (mais uniforme!) des coordonnées
- Même formule pour estimer l'aire sous la courbe :

$$I \simeq (b-a) \times \frac{1}{M} \sum_{i=1}^{M} f(x_i) = \int_{a}^{b} dx \times \overline{f(x)}$$

- Les deux approches convergent vers la même valeur pour M grand
- Vitesse de convergence pour une intégrale en dimension *d* :
 - Echantillonnage régulier : erreur $\propto M^{-2/d}$
 - Méthode Monte Carlo Monte : erreur $\propto M^{-1/2}$
 - Méthode MC plus efficace pour d > 4

III.2 L'échantillonnage préférentiel

• Application au calcul d'une grandeur thermodynamique :

$$A = \frac{\iiint a(\vec{r}) \exp(-\beta E(\vec{r})) d\vec{r}}{\iiint \exp(-\beta E(\vec{r})) d\vec{r}}$$

$$\circ \iiint \exp(-\beta E(\vec{r})) d\vec{r} \simeq \Gamma \times \frac{1}{M} \sum_{i=1}^{M} \exp(-\beta E_i)$$

$$\circ \iiint a(\vec{r}) \exp(-\beta E(\vec{r})) d\vec{r} \simeq \Gamma \times \frac{1}{M} \sum_{i=1}^{M} a(C_i) \exp(-\beta E_i)$$

$$\circ \Gamma = \iiint d\vec{r}$$

$$A \simeq \frac{\sum_{i=1}^{M} a(\mathcal{C}_i) \exp(-\beta E_i)}{\sum_{i=1}^{M} \exp(-\beta E_i)} = \sum_{i=1}^{M} a(\mathcal{C}_i) \tilde{\mathcal{P}}(\mathcal{C}_i)$$

 Problème : de nombreuses configurations ont une probabilité très faible donc l'estimation numérique va converger très lentement

III.2 L'échantillonnage préférentiel

 Pour améliorer la précision sur l'intégrale, il vaut mieux échantillonner plus souvent les zones où la fonction f(x) prend des valeurs importantes :

- Mathématiquement, il est équivalent de faire :
 - Echantillonnage uniforme selon x :

$$I \simeq (b-a) \times \frac{1}{M} \sum_{i=1}^{M} f(x_i)$$

• Echantillonnage selon une loi de distribution $\rho(x)$:

$$I \simeq \frac{1}{M} \sum_{i=1}^{M} \frac{f(x_i)}{\rho(x_i)}$$

M1FJC

Echantillonage uniforme : $\rho(x) = 1/(b - a)$

M1FJC

III.2 L'échantillonnage préférentiel

• Application au calcul d'une grandeur thermodynamique :

$$A = \frac{\iiint a(\vec{r}) \exp(-\beta E(\vec{r})) d\vec{r}}{\iiint \exp(-\beta E(\vec{r})) d\vec{r}}$$

$$= \iiint \exp(-\beta E(\vec{r})) d\vec{r} \simeq \frac{1}{M} \sum_{i=1}^{M} \frac{\exp(-\beta E_i)}{\rho(C_i)}$$

$$= \iiint a(\vec{r}) \exp(-\beta E(\vec{r})) d\vec{r} \simeq \frac{1}{M} \sum_{i=1}^{M} \frac{a(C_i) \exp(-\beta E_i)}{\rho(C_i)}$$

• Si on prend $\rho(C_i) = \mathcal{P}(C_i) = \exp(-\beta E_i)/Q$, on obtient :

$$A \simeq \frac{1}{M} \sum_{i=1}^{M} a(\mathcal{C}_i)$$

• Comment générer des configurations selon la loi de distribution $\mathcal{P}(\mathcal{C})$?
III.3 Chaînes de Markov et micro-réversibilité

- Chaîne de Markov :
 - Succession de configurations $\{C(t)\}_{t=1,M}$ suivant une loi de distribution $\rho(C)$
- Procédure de création de la chaîne de Markov :
 - Soit C_i la configuration au pas t
 - Génération d'une configuration C_k possible pour le pas (t + 1)
 - Probabilité de passage $W(\mathcal{C}_i \to \mathcal{C}_k)$ de la configuration \mathcal{C}_i vers la configuration \mathcal{C}_k :
 - ne dépend que de C_i , C_k , et de la loi de distribution $\rho(C)$
 - Ne dépend pas de « l'histoire » du système
 - « Choix » de la configuration au pas (t + 1) :
 - × Soit la même configuration C_i
 - × Soit une nouvelle configuration C_k

M1FJC

III.3 Chaînes de Markov et micro-réversibilité

• Probabilité d'être dans la configuration C_i au pas (t + 1):

$$P(\mathcal{C}_{i}, t+1) = \left[P(\mathcal{C}_{i}, t) - \sum_{k \neq i} P(\mathcal{C}_{i}, t)W(\mathcal{C}_{i} \rightarrow \mathcal{C}_{k})\right] + \sum_{k \neq i} P(\mathcal{C}_{k}, t)W(\mathcal{C}_{k} \rightarrow \mathcal{C}_{i})$$

Probabilité de conserver
la configuration \mathcal{C}_{i}
Probabilité d'arriver dans
la configuration \mathcal{C}_{i}

• Condition d'équilibre (stationnarité) :

À l'équilibre, la probabilité d'être dans la configuration C_i à un pas t ne dépend que de C_i : $P(C_i, t + 1) = P(C_i, t) = \rho(C_i)$

$$\sum_{k \neq i} \rho\left(\mathcal{C}_{i}\right) W(\mathcal{C}_{i} \to \mathcal{C}_{k}) = \sum_{k \neq i} \rho\left(\mathcal{C}_{k}\right) W(\mathcal{C}_{k} \to \mathcal{C}_{i})$$

• Condition suffisante : micro-réversibilité

 $\forall (\mathcal{C}_i, \mathcal{C}_k), \qquad \rho(\mathcal{C}_i) W(\mathcal{C}_i \to \mathcal{C}_k) = \rho(\mathcal{C}_k) W(\mathcal{C}_k \to \mathcal{C}_i)$

III.4 Le critère de Metropolis

- Objectif :
 - Déterminer les probabilités de passage $W(C_i \rightarrow C_k)$ de façon à ce que les états soient visités avec la loi de probabilité ρ
 - Loi de probabilité visée : $\rho(\mathcal{C}_j) = \mathcal{P}(\mathcal{C}_j)$
- Condition de micro-réversibilité :

$$\frac{W(\mathcal{C}_i \to \mathcal{C}_k)}{W(\mathcal{C}_k \to \mathcal{C}_i)} = \frac{\mathcal{P}(\mathcal{C}_k)}{\mathcal{P}(\mathcal{C}_i)}$$

• Critère de Metropolis :

Si
$$\mathcal{P}(\mathcal{C}_k) > \mathcal{P}(\mathcal{C}_i), W(\mathcal{C}_i \to \mathcal{C}_k) = 1$$

Si $\mathcal{P}(\mathcal{C}_k) < \mathcal{P}(\mathcal{C}_i), W(\mathcal{C}_i \to \mathcal{C}_k) = \frac{\mathcal{P}(\mathcal{C}_k)}{\mathcal{P}(\mathcal{C}_i)}$

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(\frac{\mathcal{P}(\mathcal{C}_k)}{\mathcal{P}(\mathcal{C}_i)}, 1\right)$$

III.4 Le critère de Metropolis – Ensemble canonique

• Loi de probabilité des configurations dans l'ensemble canonique :

$$\mathcal{P}_{NVT}(\mathcal{C}_j) = \frac{1}{\Lambda^{3N} N!} \times \frac{1}{Z_N} \exp\left(-\frac{E_j}{k_{\rm B}T}\right)$$

• Probabilité de passage

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \exp\left(-\frac{E_k - E_i}{k_{\rm B}T}\right)\right)$$

- Mise en œuvre :
 - Calcul de l'énergie E_i de la configuration C_i
 - Construction de la configuration C_k
 - Calcul de l'énergie E_k de la configuration C_k

• Calcul de :
$$Q(\mathcal{C}_i \to \mathcal{C}_k) = \exp\left(-\frac{E_k - E_i}{k_{\rm B}T}\right)$$

- $\circ~$ Génération d'un nombre aléatoire ${\cal R}$ compris entre 0 and 1 :
 - × Si $\mathcal{R} < \mathcal{Q}(\mathcal{C}_i \rightarrow \mathcal{C}_k)$, on accepte la nouvelle configuration \mathcal{C}_k
 - × Si $\mathcal{R} > \mathcal{Q}(\mathcal{C}_i \rightarrow \mathcal{C}_k)$, on conserve la configuration \mathcal{C}_i

III.5 Les mouvements Monte Carlo

- Génération de la configuration C_k :
 - Si aléatoire : forte probabilité d'avoir une énergie très élevée
 - Probabilité d'accepter la nouvelle configuration très faible
 - o Efficacité faible de la chaîne de Markov
- Mouvements Monte Carlo :
 - Modification de la configuration C_i pour construire la configuration C_k
 - Dépendent du système et sont définis au début de la simulation
 - Peuvent être « non physiques »
 - Condition importante : ils doivent permettre de générer toutes les configurations possibles du système
 - × Monoatomiques : translations suffisantes
 - Polyatomiques rigides : rotations de la molécule nécessaires

M1FJC

III.6 L'algorithme de Monte Carlo en pratique

- Sélection du type de mouvement :
 - Chaque type de mouvement a une probabilité $P(\mathcal{M})$ (sommant à 1)

20

- o Génération d'un nombre aléatoire \mathcal{R}_1 entre 0 et 1
- Le mouvement $\mathcal M$ est choisi si :

20

$$\sum_{j=1}^{M-1} P(j) < \mathcal{R}_1 < \sum_{j=1}^{M} P(j)$$

- Choix des probabilités des différents mouvements :
 - N'affecte a priori pas les valeurs des grandeurs moyennes
 - Mais peut aider à une meilleure efficacité d'échantillonnage des configurations

M1FJC

III.6 L'algorithme de Monte Carlo en pratique

- Sélection du type de mouvement
- Sélection de la molécule à qui le mouvement est appliquée :
 - Séparation de l'intervalle [0; 1] en *N* morceaux
 - o Génération d'un nombre aléatoire \mathcal{R}_2 entre 0 and 1
 - Choix de la molécule *m* telle que :

 $\frac{m-1}{N} < \mathcal{R}_2 < \frac{m}{N}$

- Sélection du type de mouvement
- Sélection de la molécule à qui le mouvement est appliquée
- Application du mouvement sélectionné à la molécule *m* :
 - Génération de nombres aléatoires (3 pour une translation : ξ_x , ξ_y , ξ_z)
 - Déplacement de la molécule pour créer la configuration C_k « à tester »

$$x_m(\mathcal{C}_k) = x_m(\mathcal{C}_i) + (2\xi_x - 1)\delta r$$
$$y_m(\mathcal{C}_k) = y_m(\mathcal{C}_i) + (2\xi_y - 1)\delta r$$

$$z_m(\mathcal{C}_k) = z_m(\mathcal{C}_i) + (2\xi_z - 1)\delta r$$

- Sélection du type de mouvement
- Sélection de la molécule à qui le mouvement est appliquée
- Application du mouvement sélectionné à la molécule *m*
- Calcul de l'énergie de la nouvelle configuration créée C_k
- Application du critère de Metropolis :

• Calcul de :
$$\mathcal{Q}(\mathcal{C}_i \to \mathcal{C}_k) = \exp\left(-\frac{E_k - E_i}{k_{\rm B}T}\right)$$

- o Génération d'un nombre aléatoire \mathcal{R} compris entre 0 and 1 :
 - × Si $\mathcal{R} < \mathcal{Q}(\mathcal{C}_i \rightarrow \mathcal{C}_k)$, on accepte la nouvelle configuration \mathcal{C}_k
 - × Si $\mathcal{R} > \mathcal{Q}(\mathcal{C}_i \rightarrow \mathcal{C}_k)$, on conserve la configuration \mathcal{C}_i

- Les simulations Monte Carlo utilisent une grande quantité de nombres aléatoires (d'où leur nom)
- Exemple précédent : création d'une configuration par translation d'une molécule
 - o 1 nombre aléatoire pour "choisir" le mouvement de translation
 - 1 nombre aléatoire pour "choisir" la molécule à qui est appliquée la translation
 - o 3 nombres aléatoires pour générer le vecteur de translation
 - o 1 nombre aléatoire pour déterminer l'acceptation/le rejet de la configuration
 - Bilan : 6 nombres aléatoires pour seulement un cycle (10-1000 millions de cycles typiquement dans une simulation MC)

III.7 Monte Carlo et ensembles statistiques

- Simulations Monte Carlo bien adaptées pour l'ensemble canonique :
 - o mouvements typiques : translation, rotation
 - Probabilité d'acceptation : critère de Metropolis

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \exp\left(-\frac{E_k - E_i}{k_B T}\right)\right)$$

- Mais l'algorithme Monte Carlo peut être adapté à d'autres ensembles :
 - Ensemble isotherme-isobare (N, p, T)
 - Ensemble grand-canonique (μ, V, T)
- Adaptation nécessaire :

M1FJC

- Nouveaux mouvements
- Nouvelles probabilités des configurations → Nouveaux critères d'acceptation

III.7 Monte Carlo et ensembles statistiques – Ensemble (μ , V, T)

- Ensemble grand-canonique adapté aux systèmes ouverts
- Exemple d'application :
 - Calcul d'isothermes d'adsorption dans un matériau poreux

- Nécessité de créer des mouvements pouvant faire varier le nombre de particules :
 - Mouvement d'insertion : $N_k = N_i + 1$
 - Mouvement de suppression : $N_k = N_i 1$
 - Les particules sont échangées avec un réservoir « fictif »
- Probabilité d'une configuration C_i :

M1FJC

$$\mathcal{P}_{\mu VT}(\mathcal{C}_j) \propto \frac{1}{N_j!} \left(\frac{V}{\Lambda^3}\right)^{N_j} \exp\left(\frac{-E_j + \mu N_j}{k_B T}\right)$$

III.7 Monte Carlo et ensembles statistiques – Ensemble (μ , V, T)

• Probabilité d'une configuration C_i :

$$\mathcal{P}_{\mu VT}(\mathcal{C}_j) \propto \frac{1}{N_j!} \left(\frac{V}{\Lambda^3}\right)^{N_j} \exp\left(\frac{-E_j + \mu N_j}{k_B T}\right)$$

- Modification de l'expression du critère de Metropolis pour accepter les mouvements
 - Mouvement sans changement de nombre de particules : $N_k = N_i$

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \exp\left(-\frac{E_k - E_i}{k_B T}\right)\right)$$

• Mouvement d'insertion : $N_k = N_i + 1$

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \frac{V}{\Lambda^3(N_i + 1)} \exp\left(-\frac{E_k - E_i}{k_B T} + \frac{\mu}{k_B T}\right)\right)$$

• Mouvement de délétion : $N_k = N_i - 1$

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \frac{\Lambda^3 N_i}{V} \exp\left(-\frac{E_k - E_i}{k_B T} - \frac{\mu}{k_B T}\right)\right)$$

III.7 Monte Carlo et ensembles statistiques – Ensemble (μ , V, T)

III.7 Monte Carlo et ensembles statistiques – Ensemble (N, p, T)

- Le volume du système n'est pas le même dans toutes les configurations :
 - Nouveau mouvement : changement de volume

 $V_k = V_i + (2\xi - 1)\delta V$

- En pratique : homothétie sur les positions des centres de masse
- Modifications dans l'algorithme de Metropolis :
 - Le volume V du système est une nouvelle variable microscopique
 - Probabilité d'une configuration C_j :

$$\mathcal{P}_{NpT}(\mathcal{C}_j) \propto \frac{1}{N!} \left(\frac{V_j}{\Lambda^3}\right)^N \exp\left(\frac{-E_j - PV_j}{k_B T}\right)$$

• Probabilité d'acceptation de la nouvelle configuration :

$$W(\mathcal{C}_i \to \mathcal{C}_k) = \min\left(1, \left(\frac{V_k}{V_i}\right)^N \exp\left(-\frac{E_k - E_i}{k_B T} - \frac{P(V_k - V_i)}{k_B T}\right)\right)$$

Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

IV.1 Principe de la Dynamique Moléculaire

- Modélisation de la trajectoire des particules du système
 - Calcul de moyennes temporelles
 - o Suivi de la dynamique du système
- Cadre de la mécanique newtonienne :
 - o Les atomes sont décrits comme des particules ponctuelles
 - Le mouvement des atomes est décrit par la 2^{ème} loi de Newton :

$$m_{i}\overrightarrow{a_{i}} = m_{i}\frac{d\overrightarrow{v_{i}}}{dt} = m_{i}\frac{d^{2}\overrightarrow{r_{i}}}{dt^{2}} = \overrightarrow{F_{i}} = -\overrightarrow{V_{i}}\mathcal{V}(\overrightarrow{r}(t))$$

- Calcul des forces :
 - $\circ~$ Les forces dérivent d'un potentiel ${\cal V}$
 - Energie potentielle calculée :
 - × Par la mécanique quantique : Dynamique moléculaire ab initio
 - Par la mécanique classique : Dynamique moléculaire (classique)

IV.2 Intégration des équations du mouvement

- Intégration des équations du mouvement :
 - o Détermination de la trajectoire des particules au cours du temps
 - Résolution analytique impossible pour un système constitué de plus de 2 particules
 - o Solution numérique nécessaire...
- Intégration numérique des équations du mouvement :
 - Discrétisation de la trajectoire : détermination des positions et des impulsions à des instants discrets
 - Méthodes de différence finie :

$$\vec{r_i}(t+\delta t) = \vec{r_i}(t) + \delta t \vec{v_i}(t) + \frac{1}{2} \delta t^2 \vec{a_i} + \cdots + \frac{1}{t_0} t_0 + \delta t_0$$

 $t_0 + 2\delta t$

IV.2 Intégration des équations du mouvement

- Intégration par la méthode d'Euler :
 - A l'instant t, on connaît les positions $\vec{r_i}(t)$ et les vitesses $\vec{v_i}(t)$
 - Calcul de l'accélération de la particule $i : \vec{a_i} = \vec{F_i}/m_i = -\vec{\nabla_i} \mathcal{V}/m_i$
 - Calcul de la position et de la vitesse à l'instant $t + \delta t$:

 $\vec{r_i}(t+\delta t) \simeq \vec{r_i}(t) + \delta t \vec{v_i}(t)$

 $\overrightarrow{v_i}(t+\delta t) \simeq \overrightarrow{v_i}(t) + \delta t \overrightarrow{a_i}(t)$

- Limites de la méthode :
 - Précision faible
 - o Nécessité d'un pas de temps très faible

IV.2 Intégration des équations du mouvement – Algorithme de Verlet

• Développements de Taylor de la position en $(t - \delta t)$ et $(t + \delta t)$: $\vec{r_i}(t + \delta t) = \vec{r_i}(t) + \delta t \vec{v_i}(t) + \frac{1}{2} \delta t^2 \vec{a_i}(t) + \frac{1}{3!} \delta t^3 \frac{d^3 \vec{r_i}}{dt^3} + \mathcal{O}(\delta t^4)$

$$\vec{r_i}(t-\delta t) = \vec{r_i}(t) - \delta t \vec{v_i}(t) + \frac{1}{2} \delta t^2 \vec{a_i}(t) - \frac{1}{3!} \delta t^3 \frac{d^3 \vec{r_i}}{dt^3} + \mathcal{O}(\delta t^4)$$

• Algorithme de Verlet (1967) :

$$\vec{r_i}(t+\delta t) = 2\vec{r_i}(t) - \vec{r_i}(t-\delta t) + \delta t^2 \vec{a_i}(t) + \mathcal{O}(\delta t^4)$$

$$\overrightarrow{v_i}(t) = \frac{\overrightarrow{r_i}(t+\delta t) - \overrightarrow{r_i}(t-\delta t)}{2\delta t} + \mathcal{O}(\delta t^3)$$

• Avantages :

M1FJC

- Positions connues avec une bonne précision en $O(\delta t^4)$
- o Calcul des vitesses pas nécessaire pour déterminer la trajectoire
- Peu coûteux en stockage

IV.3 L'algorithme de DM en pratique – Le pas de temps

- Choix du pas de temps :
 - o Petit : bonne précision
 - o Grand : simulation « plus longue »
 - o Compromis précision/rapidité
- Critère de choix :

M1FJC

$\delta t <<$ temps caractéristique le plus court de la dynamique du système

 $\delta t' > \delta t$

δt

Exemple 1: atomes d'argon

Distance caractéristique: $d \approx 0.3nm$ Vitesse caractéristique : (T = 300K)et $M(Ar) = 40g.mol^{-1}$

$$v \approx \sqrt{\frac{3k_BT}{m}} \approx 430m.s^{-1}$$

Temps caractéristique : $\tau \approx \frac{d}{v} \approx 10^{-13}s$

$$\bullet \quad \delta t \simeq 10^{-14} \text{ s}$$

Exemple 2 : molécules d'eau

Mouvement le plus rapide : vibration de la liaison O-H

Période de la vibration:

 $\nu\approx 4000 cm^{-1} \Rightarrow T\approx 10^{-14} s$

M1FJC

IV.4 Dynamique moléculaire et ensembles statistiques

- Les forces intermoléculaires sont conservatives :
 - Energie totale constante \rightarrow Ensemble microcanonique (N, V, E)
 - La température ou la pression sont des résultats de la simulation
- Température (liée à l'énergie cinétique) :

$$T = \frac{2\langle K \rangle}{3Nk_B} = \frac{2}{3Nk_B} \left(\sum_{i=1}^N \frac{1}{2} m v_i^2 \right)_{NVE}$$

• Pression (théorème du Viriel) :

$$p = \left\langle \frac{1}{V} \left[Nk_B T - \frac{1}{3k_B T} \sum_{i < j} r_{ij} F_{ij} \right] \right\rangle_{NVE}$$

• Expérimentalement, on est plutôt à température et/ou pression constante

M1FJC

IV.4 Dynamique moléculaire et ensembles statistiques – Fixer *T*

• Fixer la température d'une simulation à *T*₀ revient à fixer l'énergie cinétique moyenne :

$$\langle K \rangle = \left\langle \sum_{i} \frac{1}{2} m_{i} v_{i}^{2} \right\rangle = \frac{3}{2} N k_{\rm B} T_{0}$$

- Algorithme de « velocity-rescaling » :
 - Principe de l'algorithme :
 - A chaque pas de temps (ou tous les n pas de temps), calcul de la température instantanée T
 - × Multiplication des vitesses par un facteur $\lambda = \sqrt{T_0/T}$
 - La température instantanée devient alors T₀
 - Intégrer les équations du mouvement
 - Avantage de l'algorithme : simple et peu coûteux
 - Problème : échantillonnage non conforme à l'ensemble canonique (N, V, T)

$$\mathcal{P}_{NVT}(\vec{p}) = \left(\frac{1}{2\pi m k_{\rm B}T}\right)^{\frac{3}{2}} \exp\left(-\frac{p^2}{2m k_{\rm B}T}\right)$$

Utilisation dans les premières étapes pour homogénéiser la température

$$T = \frac{2K}{3Nk_{\rm B}} = \frac{1}{3Nk_{\rm B}} \sum_{i} m_i v_i^2$$

IV.4 Dynamique moléculaire et ensembles statistiques – Fixer *T*

- Principe physique du thermostat : milieu extérieur qui peut échanger de l'énergie avec le système sans changer de température
- Thermostat de Nosé-Hoover :
 - Addition d'un degré de liberté externe ζ (bain) qui joue le rôle de thermostat
 - o Modification des équations du mouvement :

$$m\vec{a_i} = \vec{F_i}(t) - \zeta(t)\vec{v_i}(t)$$
 Force de « friction » :
Positive ou négative

Paramètre du thermostat: Contrôle la force du couplage entre le bain et le système

• Par des algorithmes similaires, on peut imposer la valeur de la pression

IV.5 Dynamique moléculaire – Exemples

• Modèle de fluide Lennard-Jones :

$$\mathcal{V}(r_{ij}) = 4\varepsilon \left[\left(\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \right) \right]$$

https://www.etomica.org/modules

- Simulation de différentes phases
- Calcul de grandeurs moyennes en fonction de paramètres thermodynamiques

IV.5 Dynamique moléculaire – Exemples

IV.5 Dynamique moléculaire – Exemples

IV.5 Dynamique moléculaire – Exemples

0.0 ns

Partie 8 Introduction à la simulation moléculaire

- I. Approche numérique de la thermodynamique statistique
- II. Description d'un système moléculaire
- III. La méthode Monte Carlo
- IV. La Dynamique Moléculaire
- V. Aspects pratiques des Simulations Moléculaires
- VI. Applications et exemples

• Les particules sont inscrites dans un volume limité

M1FJC

V. Aspects pratiques des simulations moléculaires

- Système de *N* particules
- Temps de calcul de l'énergie environ proportionnel à N^2
 - Limitation de la taille du système à quelques milliers
 - Problème d'effets de bord

• Exemples :

M1FJC

- o réseau cubique régulier de 1000 atomes (10x10x10)
 - × Nombre d'atomes au cœur : $8 \times 8 \times 8 = 512$
 - Environ 50% des atomes en surface !
- Même avec 10^6 atomes (cube 100x100x100) :
 - Nombre d'atomes au cœur : $98 \times 98 \times 98 = 941192$
 - Environ 6% des atomes en surface

10x10x10=1000 / 8x8x8= 512

488

- Condition périodique :
 - Réplication de la maille dans toutes les directions de l'espace

- Création d'un réseau cristallin :
 - o Suppression des effets de bord
 - Artefacts dus à la périodicité ?
 - Nombre d'interactions à calculer devient infini...

- Potentiels intermoléculaires en $(1/r)^n$
 - o Si n > 2, interactions à courte portée
 - o Exemple : interaction de dispersion

- Introduction d'un rayon de coupure r_c dans le calcul des interactions
- Quelle valeur choisir pour r_c ?

M1FJC

- Convention d'image minimum : Un atome ne peut ressentir l'influence que d'une seule image de chaque autre atome du système (la plus proche)
- Restriction sur la valeur de r_c :

• Atténue en partie l'effet de la périodicité

M1FJC

 $r_{c} < \frac{L}{2}$

M1FJC

V.1 Conditions périodiques et troncatures de potentiel

• Les interactions électrostatiques en 1/r sont à longue portée

 L'utilisation d'un rayon de coupure est inappropriée – méthodes plus complexes (sommation d'Ewald, Particle Mesh Ewald)
V.2 Initialisation d'une simulation

- Configuration initiale :
 - o DM et MC : Coordonnées initiales de toutes les particules
 - DM : vitesses (normes et directions) initiales de chacune des particules
- Génération des coordonnées initiales :
 - Données expérimentales (RX ou RMN) ou modèles disponibles : phases solides, macromolécules biologiques,...
 - Phases fluides : placement des molécules sur une grille avec des orientations aléatoires.
 - o Placement « complètement » aléatoire
- Génération des vitesses initiales (DM) :
 - o Directions aléatoires différentes pour chaque atome
 - Normes tirées d'une distribution de Boltzmann correspondant à la température souhaitée :

$$P(\vec{v}) \propto \exp\left(-\frac{mv^2}{k_{\rm B}T}\right)$$

V.3 Déroulement d'une simulation moléculaire

- La configuration initiale n'est a priori pas à l'équilibre
- Deux phases dans une simulation :
 - Équilibration : évolution du système pour atteindre l'équilibre
 - Production : calcul des valeurs moyennes
- Convergence d'une simulation :
 - La grandeur d'intérêt fluctue autour d'une valeur moyenne
 - La vitesse de convergence n'est pas prévisible mais peut être accélérée par un choix judicieux du point de départ
 - Certaines grandeurs convergent plus vite que d'autres

Exemple : simulation de l'adsorption d'eau dans un matériau poreux dans l'ensemble (μ, V, T)

V.4 Grandeurs accessibles en simulation moléculaire

• Propriétés structurales :

- Configuration à l'équilibre d'une macromolécule
- Densité et structuration (g(r)) d'un fluide dans différentes conditions thermodynamiques (p, T)
- Propriétés thermodynamiques :
 - Diagrammes de phase
 - Capacités calorifiques
 - Coefficients thermoélastiques

M1FJC

- Propriétés de transport
 - o Coefficients de diffusion
 - o Viscosité
 - Coefficient de diffusion thermique

• Calcul de F ou G nécessite des protocoles particuliers

V.6 Dynamique Moléculaire ou Monte Carlo ?

M1FJC

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

V.6 Dynamique Moléculaire ou Monte Carlo ?

	Dynamique Moléculaire	Monte Carlo
Ensembles statistiques	(N , V , E) (N, V, T) (N, p, T)	(N, V, T) (μ, V, T) (N, p, T)
Microétat	Espace des phases	Espace des configurations
Temps de calcul	+++	++
Grandeurs	Statiques Dynamiques	Statiques
Autres	Mouvements collectifs	Passage de barrières énergétiques

D4CI445 – Thermodynamique statistique et Simulation Moléculaire

