Contrôle continu 1 – algèbre linéaire

Exercice 1 (vrai/faux). Dire si les assertions suivantes sont vraies ou fausses, en justifiant par un contre-exemple lorsque l'assertion est fausse, et en donnant une démonstration ou en citant convenablement le cours sinon. Soit E un espace vectoriel. Les familles considérées sont des familles de E.

- 1. Toute famille contenant une famille libre est libre. Non; si e_1 est un vecteur non nul de E, alors la famille (e_1) est libre mais la famille $(e_1, 2e_1)$ n'est pas libre.
- 2. Soit $k \leq n$ deux entiers et (u_1, \ldots, u_n) une famille de vecteurs E telle que la famille restreinte aux k premiers termes est génératrice. Alors la famille (u_1, \ldots, u_n) est génératrice : OUI, cf. cours.
- 3. Toute famille libre contient une famille génératrice : NON dans \mathbb{R}^2 la famille constituée du vecteur $e_1 = (1,0)$ est libre mais n'engendre pas \mathbb{R}^2 .
- 4. Toute famille génératrice peut-être complétée en une base : NON (par contre on peut en extraire une base) : dans \mathbb{R}^2 si on prend la famille ((1,0);(0,1);(1,1)) elle est génératrice mais on ne peut pas la compléter en une base car elle n'est pas libre.
- 5. Soit F un sous-espace vectoriel de E. De toute base de E on peut extraire une base de F: NON: par exemple si $E = \mathbb{R}^2$ et $F = \mathbb{R}(1,1)$ et si on prend comme base de \mathbb{R}^2 la base canonique (e_1,e_2) alors ni e_1 ni e_2 ne sont dans F!
- 6. Soit (u_1, u_2, u_3, u_4) une famille libre de E et $n = \dim(E)$. Alors n est supérieur ou égal à 4: OUI cf cours.
- 7. Soit (u_1, u_2, u_3, u_4) une famille génératrice de E et $n = \dim(E)$. Alors n est supérieur ou égal à 4: NON par exemple dans \mathbb{R}^2 la dimension est 2 mais on peut prendre comme famille génératrice $u_1 = (1, 0), u_2 = (0, 1), u_3 = 2u_1$ et $u_4 = 2u_2$ (qui est génératrice car la sous-famille (u_1, u_2) l'est déjà).

Exercice 2. On considère les fonctions de \mathbb{R} dans \mathbb{R} suivantes :

$$f_1: x \mapsto 1$$
, $f_2: x \mapsto x$, $f_3: x \mapsto \sin(x)$.

- 1. Montrer que la famille (f_1, f_2, f_3) est libre dans $\mathscr{F}(\mathbb{R}, \mathbb{R})$ (on peut, par exemple, évaluer en des réels bien choisis, étudier le comportement en $+\infty$.). Soit $a, b, c \in \mathbb{R}$ tels que $af_1 + bf_2 + cf_3 = 0$. On a donc pour tout $x \in \mathbb{R}$, $a + bx + c\sin(x) = 0$. En évaluant en x = 0 on obtient a = 0. Pour x non nul on a donc $b + c\frac{\sin(x)}{x} = 0$ donc en prenant la limite en $+\infty$ on obtient b = 0. Finalement, on a donc $c\sin(x) = 0$ et en évaluant en $x = \frac{\pi}{2}$ on en déduit que c = 0. Ainsi la famille est libre.
- 2. Est-ce que la famille (f_1, f_3) engendre $\mathscr{F}(\mathbb{R}, \mathbb{R})$? Non : par la question précédente la fonction f_2 n'est pas dans l'espace vectoriel engendré par (f_1, f_3) (sinon on aurait une relation de la forme $f_2 af_1 bf_3 = 0$ ce qui contredit la liberté de (f_1, f_2, f_3)).

3. Quelle est la dimension de l'espace vectoriel engendré par la famille (f_1, f_3) ? La famille (f_1, f_3) est libre comme sous-famille de la famille libre (f_1, f_2, f_3) et par ailleurs c'est par définition une famille génératrice du $\text{Vect}(f_1, f_3)$ donc c'est une base de cet espace vectoriel. En particulier il est de dimension 2.

Exercice 3. On considère dans \mathbb{R}^3 les deux ensembles suivants :

$$F := \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } 2x - y = 0\}, \text{ et } G := \{(x, y, z) \in \mathbb{R}^3 \mid (x - y)^2 = 2x + y\}.$$

- 1. Montrer que F est un sous-espace vectoriel de \mathbb{R}^3 . F est l'ensemble des solutions d'un système d'équations linéaires homogène, donc par le cours c'est un sous-espace vectoriel de \mathbb{R}^3 .
- 2. Montrer que le vecteur u := (1,2,1) est dans F puis que F = Vect(u). On vérifie que 1-2+1=0 et que $2\cdot 1-2=0$ donc u est dans F. En particulier on en déduit que $Vect(u) \subset F$. Réciproquement si $(x,y,z) \in F$ alors y=2x et z=y-x=x, donc (x,y,z)=x(1,2,1) et ceci montre que (x,y,z) est dans Vect(u).
- 3. Montrer que si $e_2 := (0,1,0)$ et $e_3 := (0,0,1)$ alors la famille (u,e_2,e_3) est une base $de \mathbb{R}^3$. Par cardinalité il suffit de vérifier que la famille est libre pour conclure. Soient donc $x,y,z \in \mathbb{R}$ tels que $xu + ye_2 + ze_3 = 0$. Sur la première coordonnée on lit x = 0. On obtient donc que $ye_2 + ze_3 = 0$ or on sait que la famille (e_2,e_3) est libre (car c'est une sous-famille de la base canonique de \mathbb{R}^3), donc y = z = 0.
- 4. Montrer que G n'est pas un sous-espace vectoriel de \mathbb{R}^3 . Le vecteur u=(2,0,0) est dans G mais 2u=(4,0,0) et $(4-0)^2=16$ et $2\cdot 4+0=8$ donc 2u n'est pas dans G.

Exercice 4. On pose dans \mathbb{R}^2 : $u_1 = (1,2)$, $u_2 := (-1,1)$, $v_2 := (1,3)$, $v_3 := (1,0)$.

- 1. Montrer que la famille (u_1, u_2) engendre \mathbb{R}^2 . Soit $a, b \in \mathbb{R}$, on veut montrer que le système $\begin{pmatrix} a \\ b \end{pmatrix} = xu_1 + yu_2$ admet une solution en $x, y \in \mathbb{R}$. Il s'agit d'un système d'équations linéaires à deux inconnues et a deux équations. On l'échelonne et on voit qu'il y a bien une solution (unique d'ailleurs).
- 2. Cette famille est-elle une base de \mathbb{R}^2 ? C'est une famille génératrice de cardinal 2 dans \mathbb{R}^2 qui est de dimension 2. C'est donc une base (ce que nous disait aussi l'existence ET l'unicité du couple (x, y) solution de la question précédente).
- 3. Montrer que la famille (u_1, v_2, v_3) engendre \mathbb{R}^2 . Comme précédemment on vérifie aisément que la famille (u_1, v_2) engendre \mathbb{R}^2 , a fortiori il en est de même de la surfamille (u_1, v_2, v_3) .
- 4. Cette famille est-elle une base de \mathbb{R}^2 ? C'est une famille de cardinal 3 dans \mathbb{R}^2 qui est de dimension 2. Donc cela ne peut pas être une base.

Exercice 5. Dans l'espace des polynômes on considère l'ensemble suivant :

$$E:=\left\{P\in\mathbb{R}[X]\mid \text{il existe }\lambda,\mu\in\mathbb{R}\text{ tels que }P=\mu X^2+(2\lambda-3\mu)X+\lambda\right\}.$$

1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}[X]$. Le polynôme 0 est visiblement dans E (on prend $\lambda = \mu = 0$). Par ailleurs si $P, Q \in E$ et si $\lambda, \mu \in \mathbb{R}$, il existe $a, b \in \mathbb{R}$ et il existe $\alpha, \beta \in \mathbb{R}$ tels que $P = aX^2 + (2b - 3a)X + b$ et $Q = \alpha X^2 + (2\beta - 3\alpha)X + \beta$. On a donc

$$\lambda P + \mu Q = \lambda \left(aX^2 + (2b - 3a)X + b \right) + \mu \left(\alpha X^2 + (2\beta - 3\alpha)X + \beta \right)$$

ce qui donne

$$\lambda P + \mu Q = (\lambda a + \mu \alpha) X^2 + (2(\lambda b + \mu \beta) - 3(\lambda a + \mu \alpha)) X + (\lambda b + \mu \beta).$$

en posant $A = \lambda a + \mu \alpha$ et $B = \lambda b + \mu \beta$ on voit que P a bien la forme d'un élément de E, avec $P = AX^2 + (2B - 3A)X + B$. Donc E est un sous-espace vectoriel de $\mathbb{R}[X]$.

- 2. Montrer (sans calcul) que la dimension de E est inférieure ou égale à 3. On voit que E est en fait inclus dans $\mathbb{R}_2[X]$ qui est un espace vectoriel de dimension 3 (de base $(1, X, X^2)$) donc E est par le cours de dimension inférieure ou égale à 3.
- 3. Montrer que les vecteurs $P_1 := X^2 3X$ et $P_2 := 2X + 1$ sont dans E et que la famille $\mathcal{B} := (P_1, P_2)$ est une base de E. On voit (avec $\lambda = 1$ et $\mu = 0$) que $X^2 3X$ est dans E. De même on voit (avec $\lambda = 0$ et $\mu = 1$) que 2X + 1 est dans E. Soit P dans E. Il existe donc $\lambda, \mu \in \mathbb{R}$ tels que $P = \mu X^2 + (2\lambda 3\mu)X + \lambda$. On a donc

$$P = \mu(X^2 - 3X) + \lambda(2X + 1) = \mu P_1 + \lambda P_2.$$

Ceci nous assure que la famille est génératrice. Par ailleurs si $\lambda, \mu \in \mathbb{R}$ sont tels que $\mu(X^2 - 3X) + \lambda(2X + 1) = 0$, alors on a $\mu X^2 + (2\lambda - 3\mu)X + \lambda = 0$. En identifiant dans la famille libre $(1, X, X^2)$ on en déduit que $\mu = \lambda = 0$. Ainsi \mathscr{B} est une base de E.

4. Vérifier que $P := X^2 - X + 1$ est dans E et écrire ses coordonnées dans la base \mathscr{B} . On prend $\mu = \lambda = 1$ pour vérifier que $P = X^2 - X + 1 = \mu X^2 + (2\lambda - 3\mu)X + \lambda$ est dans E. On cherche $a, b \in \mathbb{R}$ tels que $P = a(X^2 - 3X) + b(2X + 1)$. Le couple (a, b) sera les coordonnées de P dans la base \mathscr{B} . Soit donc $a, b \in \mathbb{R}$ tels que

$$P = aP_1 + bP_2 = a(X^2 - 3X) + b(2X + 1).$$

(Un tel couple existe car on décompose P dans la base \mathscr{B} qui est donc en particulier une famille génératrice). On a donc $X^2 - X + 1 = aX^2 + (2b - 3a)X + b$. Par identification (possible car la famille $(1, X, X^2)$ est libre) on en déduit que

$$a = b = 1$$
.

Ce sont les coordonnées recherchées.