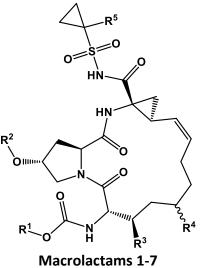


M1 Development of Drug and Health Products

TU07 : The Medicinal Chemist's Toolbox

2nd Session 2021-2022


Main Strategies of Drug Discovery (around 30 minutes)

Question 1:

- 1. What are the main sources of natural products ? Provide an example of a drug from each source.
- 2. Could you provide some details on the efforts that led to solve the challenge of Trabectedine industrial production ?

Question 2:

The results of the hepatitis **C** virus protease (HCV-NS3) domain inhibition and microsomal stability tests (HLM, Human Liver Microsomes assay), for macrolactams **1** to **7**, are collected in Table 1.

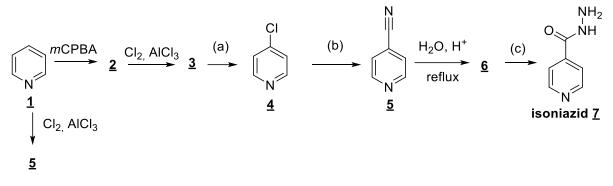
Ν

Lactame	R1	R ²	R ³	R ⁴	R⁵	[IC₅₀] HCV-NS3 GT-3a*	HLM** t _{1/2} (min)
		OCH3				(nM)	
1	<i>t</i> Bu		CH₃	Н	Н	11	11,5
2	<i>t</i> Bu		Н	Н	Н	51	6,4
3	<i>t</i> Bu		CH₃	(<i>R</i>)-CH ₃	Н	4,4	6,7
4	<i>t</i> Bu	CI	CH₃	(<i>S</i>)-CH₃	Н	50	ND
5	CF ₃ (CH ₃) ₂ C	~~~	CH₃	Н	Н	12,8	20
6	CF ₃ (CH ₃) ₂ C		C₂H₅	(<i>R</i>)-CH₃	CH₃	4,5	33
7	CF ₃ (CH ₃) ₂ C	H ₃ CO F	C_2H_5	(<i>R</i>)-CH₃	CH₃	6,3	28

Table 1.* HCV-NS3 genotype-3a producing a non-structural hepatitis C viral protein whose protease domain is a target for screening direct-acting antivirals. ******Test HLM (Human Liver Microsomes). ND = not determined

1. Among these 7 macrolactams, find the one(s) which correspond(s) to the definition of a "**hit**" **molecule**? **Justify your answer**. (2 pts)

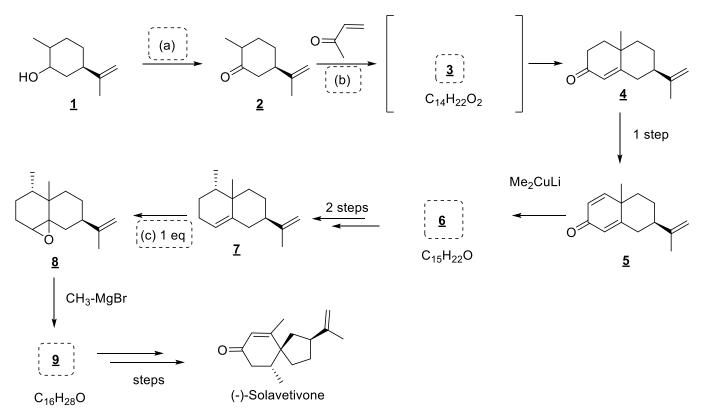
2. Interpret the effect of the addition of the CH_3 group in position R^4 on the activity of these molecules. (3 pts)


3. According to the results gathered in Table 1, propose the nature of the amino acids which are located opposite the R⁴ group at the active site of the enzyme. Among the 20 natural amino acids, give the name of 2 amino acids likely to be located at this site in the enzyme. (2 pts)

4. Interpret the influence of the substitution of the ter-butyl group (*t*Bu) by a trifluoro-tert-butyl ($CF_3(CH_3)_2C$ -) on the inhibition of the HCV-NS3 genotype-3a protease and on the microsomal stability (HLM). (1 pt)

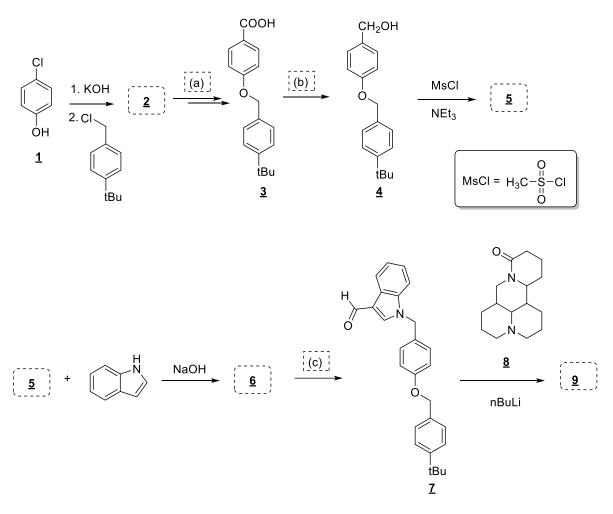
5. Which molecule would you select as the lead molecule for preclinical development? Justify your answer. (2 pts)

Exercise 1: Synthesis of Isoniazid


Isoniazid is an antibiotic used for the treatment of tuberculosis.

- 1. a. Give the structures of compounds <u>2</u> and <u>3</u>.
 - b. Justify the regioselectivity observed in the transformation of compound **2** into product **3**.
- 2. Which reactant (a) can be used to transform compound <u>3</u> into 4-chloropyridine <u>4</u>?
- 3. Which compound(s) $\underline{5}$ will be obtained when using Cl₂, AlCl₃ directly with pyridine $\underline{1}$?
- 4. a. Propose conditions (b) allowing transformation of intermediate <u>4</u> into product <u>5</u>.
 - b. What type of reaction is it? Is this reaction easy or not on a pyridine ring?
- 5. Compound <u>5</u> is hydrolyzed by aqueous acidic conditions. What is the structure of product <u>6</u>?
- 6. Propose conditions (c) allowing transformation of intermediate <u>6</u> into isoniazid <u>7</u>.

Exercise 2: Synthesis of (-)-Solavetivone


Solavetivone is a phytoalexin, a product produced by Solanaceae family (potatoes, tomatoes) in case of external stress, such as a fungus infestation, inhibiting growth of the plant.

- a. Give a reagent (a) for the transformation of compound <u>1</u> into compound <u>2</u>.
 b. What is the name of this reaction?
- 2. Give the reaction conditions (b) in complement of methylvinylketone for the reaction leading to product <u>4</u> from <u>2</u>.
- a. Give the structure of intermediate <u>3</u>.
 b. Give the mechanism for the step between intermediate <u>3</u> and <u>4</u>.
- 4. What is the name of the sequence from compound <u>2</u> to <u>4</u>?
- 5. a. Draw the structure of product <u>6</u>.
 - b. If MeLi was used as the reagent in place of Me₂CuLi, which product would be obtained?
- 6. Give the reagent (c) for the reaction leading to <u>8</u> from compound <u>7</u>. Explain the regioselectivity observed.
- 7. If two equivalents of reagent (c) would be used, anticipate the structure of the obtained product.
- 8. a. Predict the structure of product $\underline{9}$ obtained from the addition of CH₃MgBr onto substrate $\underline{8}$.
 - b. What kind of precaution should be taken during the reaction implying a magnesium derivative and why?

Exercise 3: Synthesis of sophoridine derivatives

Here we present the synthesis of compound <u>9</u> a derivative of sophoridine <u>8</u>. Sophoridine is a molecule used in the Chinese pharmacopeia to treat cancer.

- a. Give the structure of compound <u>2</u>.
 b. Explain each step to access to compound <u>2</u> from reagent <u>1</u> (type of reaction, role of the reagents used, intermediate formed).
- 2. Propose conditions (a) allowing access to compound <u>3</u> starting from derivative <u>2</u> (2 steps).
- 3. Propose reagent (b) allowing access to compound <u>4</u> starting from derivative <u>3</u>. What type of reaction is it?
- 4. Give the structure of compound <u>5</u>.
- 5. Give the structure of compound <u>6</u>. What type of reaction is it? What role plays NaOH in the reaction?
- 6. Propose conditions (c) allowing access to compound <u>7</u> starting from derivative <u>6</u>. What is the name of this reaction? Explain its regioselectivity.
- 7. An aldol reaction is performed with compound <u>7</u> and sophoridine <u>8</u>. Find the structure of the final product <u>9</u>. Give the mechanism of this step.