

Master 1 D²HP Development of Drugs and Health Products

Compulsory Teaching Unit 11: Pharmacology/Toxicology

Toxicological models: Immunotoxicology

Prof. Saadia KERDINE-RÖMER

Faculté de Pharmacie Paris-Saclay INSERM-996

February 13th & 27th

Année 2024-2025

PLAN

1. DEFINITIONS

- The different cells
- The different organs
- The immune response

2. HYPERSENSITIVITIES

- Definition of hypersensitivity
- The different tests

3. IMMUNOSUPPRESSION

- Definition of immunosuppression
- The different tests

PLAN

1. DEFINITIONS

- The different cells
- The different organs
- The immune response

2. HYPERSENSITIVITIES

- Definition of hypersensitivity
- The different tests

3. IMMUNOSUPPRESSION

- Definition of immunosuppression
- The different tests

IMMUNOTOXICOLOGY: DEFINITION

Immunotoxicology is a scientific discipline whose aim is to detect, quantify, and interpret <u>direct or indirect alterations</u> of the **immune system** that occur as a result of exposure to chemicals, pharmaceuticals, recombinant biologicals, or environmental and occupational pollutants.

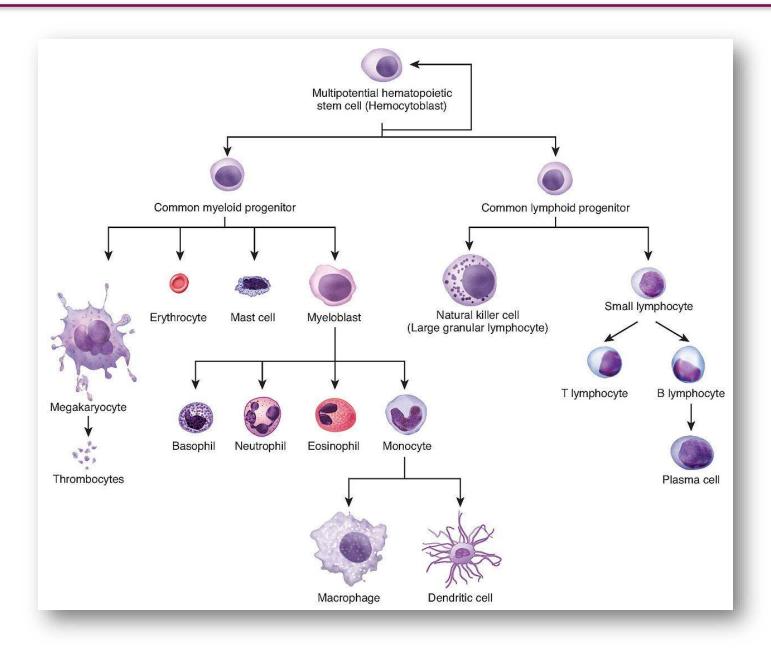
DÉFINITION DE L'IMMUNOTOXICOLOGIE

Infections, tumors

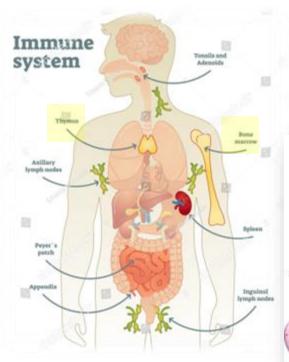
IMMUNOTOXICOLOGY

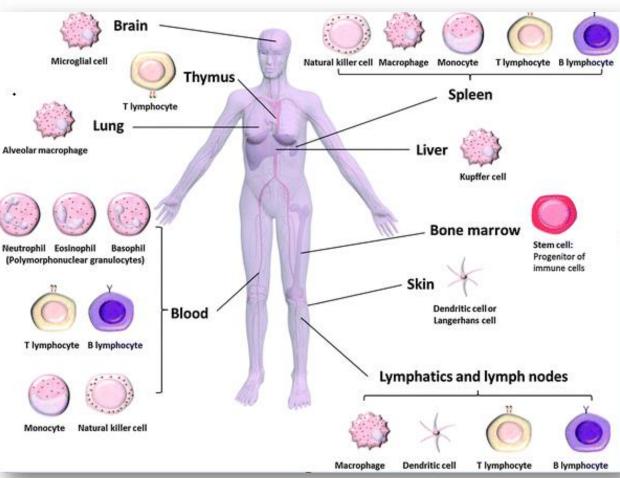
Hypersensitivity ('allergies')

Asthma, rhinitis,
Anaphylactic choc
Cytolysis (red blood cells, platelets,
neutrophils),
hepatitis IA
immune complexes,
contact eczema


Auto-immunity

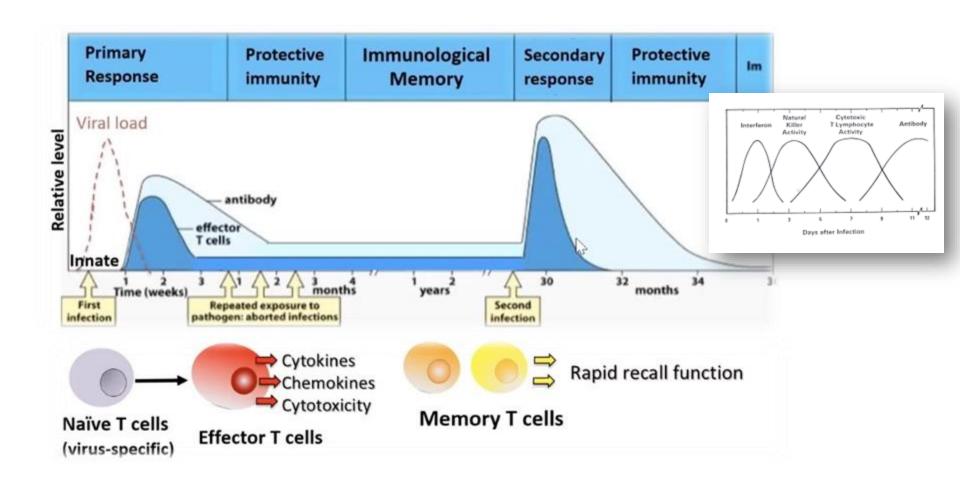
Autoimmune hepatitis, lupus


Inappropriate stimulation of the immune system

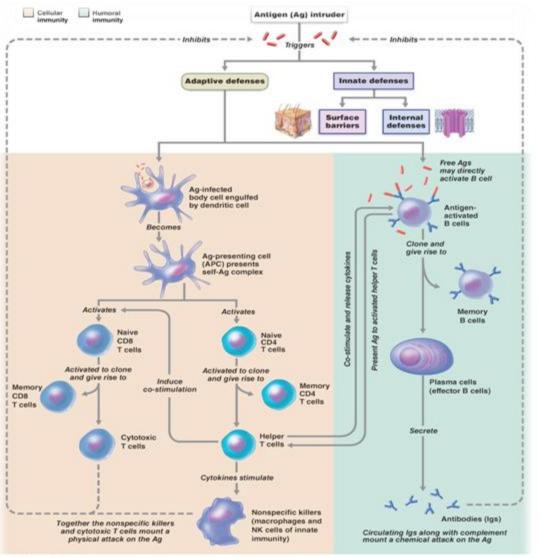

Cytokine shock Influenza (flu)-like syndrome

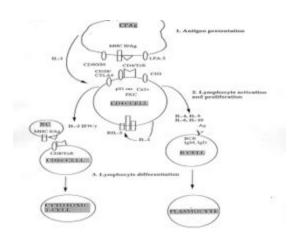
BLOOD CELLS

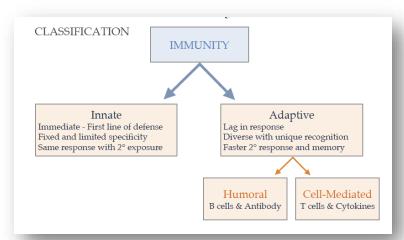
IMMUNE SYSTEM: ORGANS & CELLS



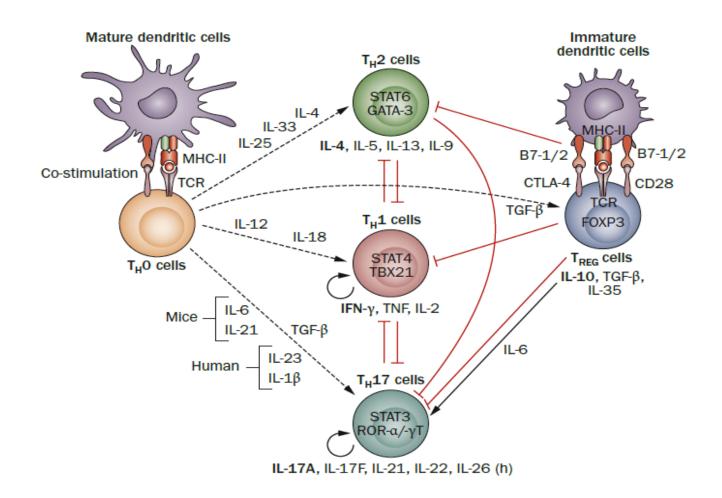
IMMUNITY

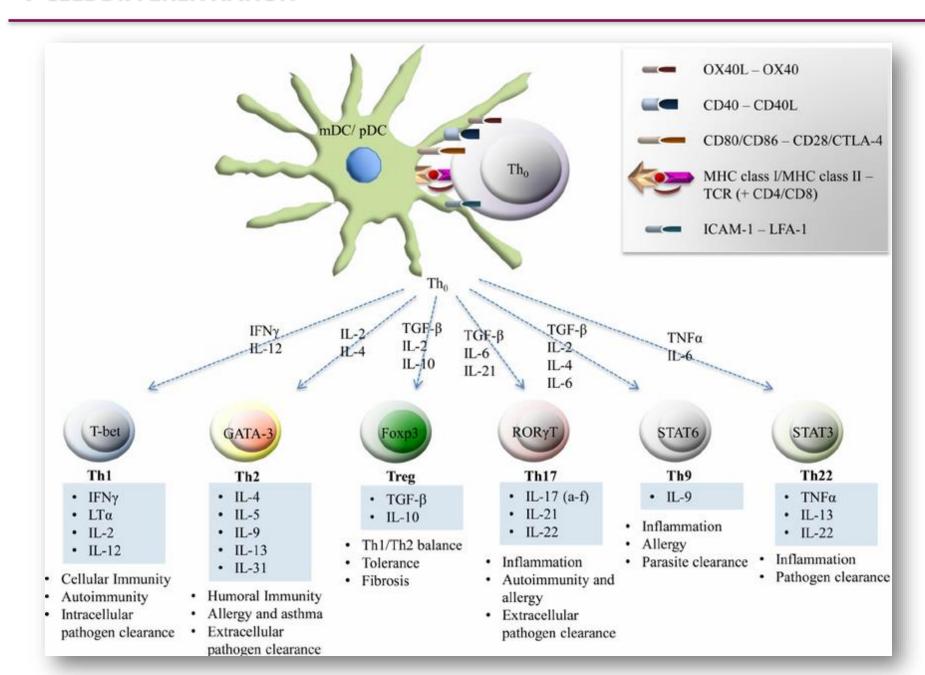

Interactivité induction **Natural immunity Adaptive immunity** innate acquired Non-specific Specific Not very discriminating Discriminating (harmless/<u>hazardous</u>) (self/non-self) **Immediate** Delay Pre-existing effectors Induced effectors Stereotyped response Memory Inter-individual variability

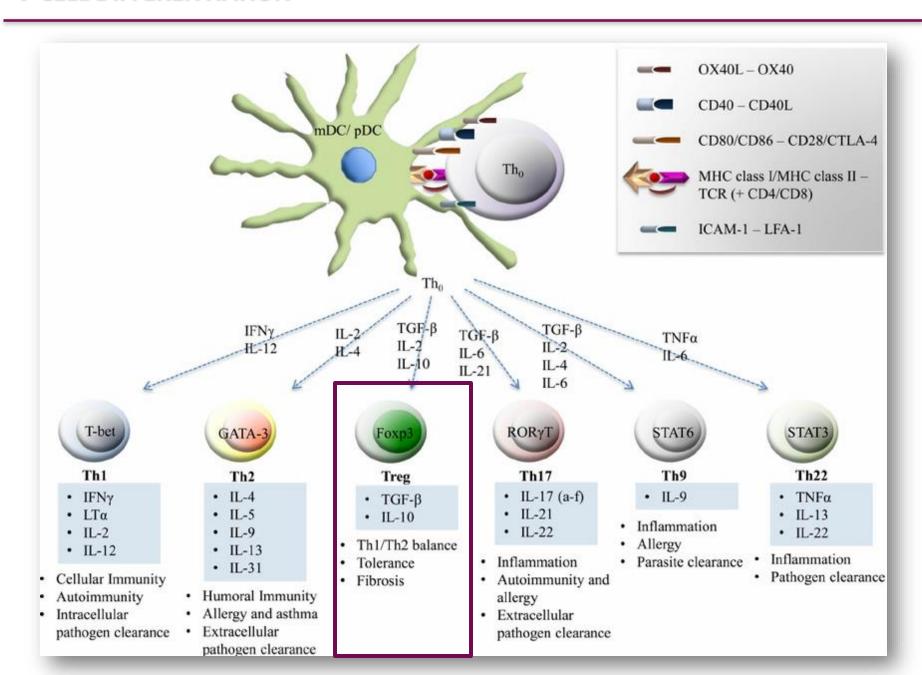

IMMUNE MEMORY & PROTECTIVE IMMUNITY



The immune system, 2009, Garland Science

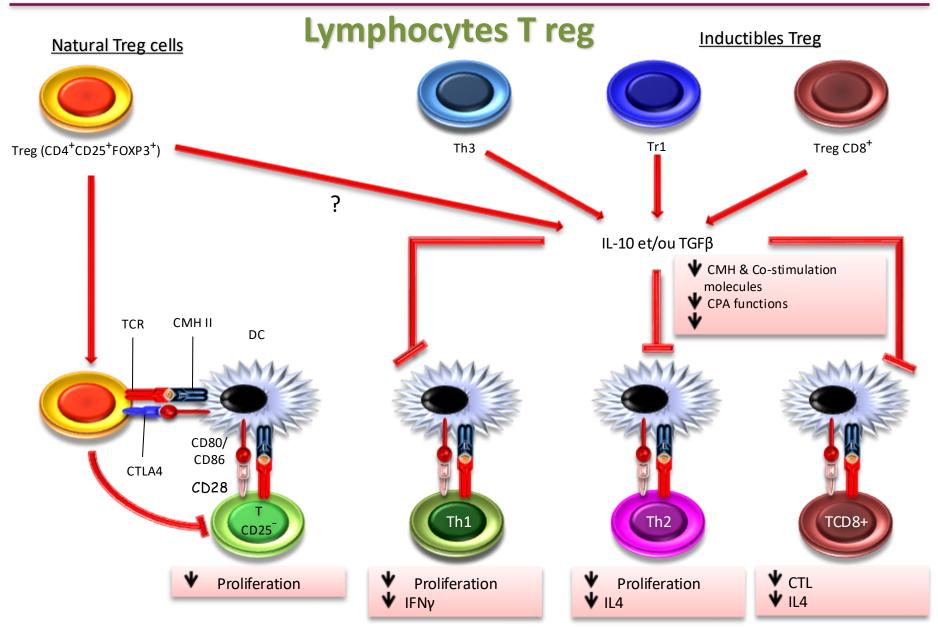

SPECIFIC IMMUNE RESPONSE





2013 Pearson Education, Inc.

Lahoute et al., 2011, Nature Rev. Cardiol.


IMMUNE TOLERANCE

CENTRAL TOLERANCE

- Thymic selection
- Eliminates lymphocytes that recognize self-antigens
- Avoids autoimmune responses directed against the "self"

PERIPHERAL TOLERANCE

- Regulatory T cells
- Allows "tolerance" to external antigens that do not present a danger
- Allows "tolerance" to self antigens that have escaped thymic (central) selection

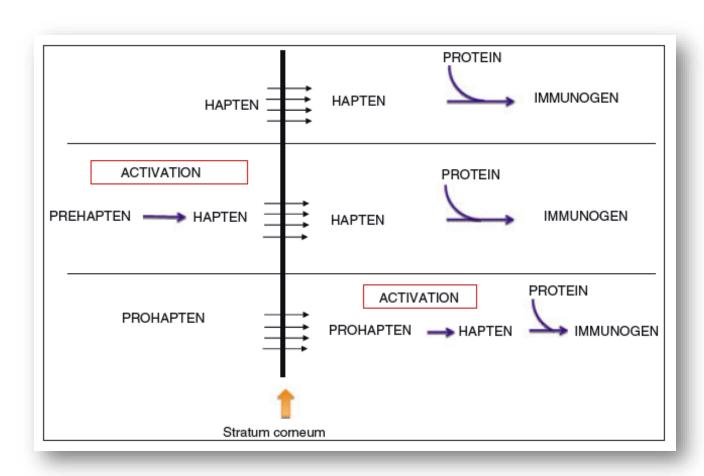
PLAN

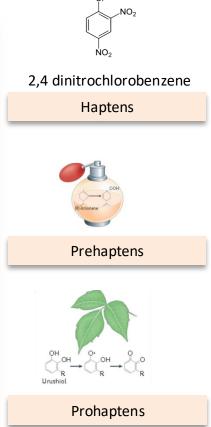
1. DEFINITIONS

- The different cells
- The different organs
- The immune response

2. HYPERSENSITIVITIES

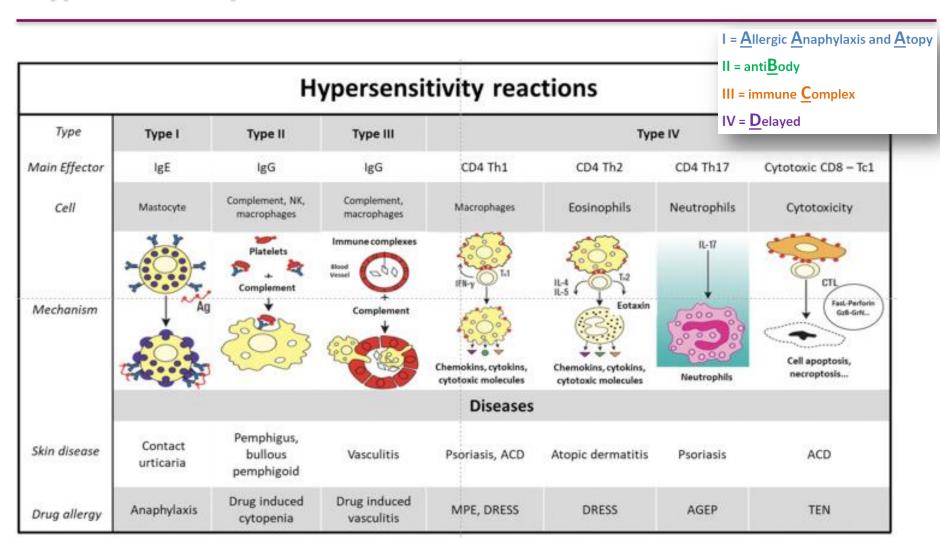
- Definition of hypersensitivity
- The different tests


3. IMMUNOSUPPRESSION


- Definition of immunosuppression
- The different tests

DEFINITION

Allergic reactions are cellular or tissue lesions that are the adverse and sometimes fatal consequences of specific immune responses to xenobiotics (exogenous allergens or haptens).


HAPTENS

Kaplan et al., 2012; Karlberg et al., 2013

Hypersensitivity reactions

MPE: Maculo-Papular Exanthema

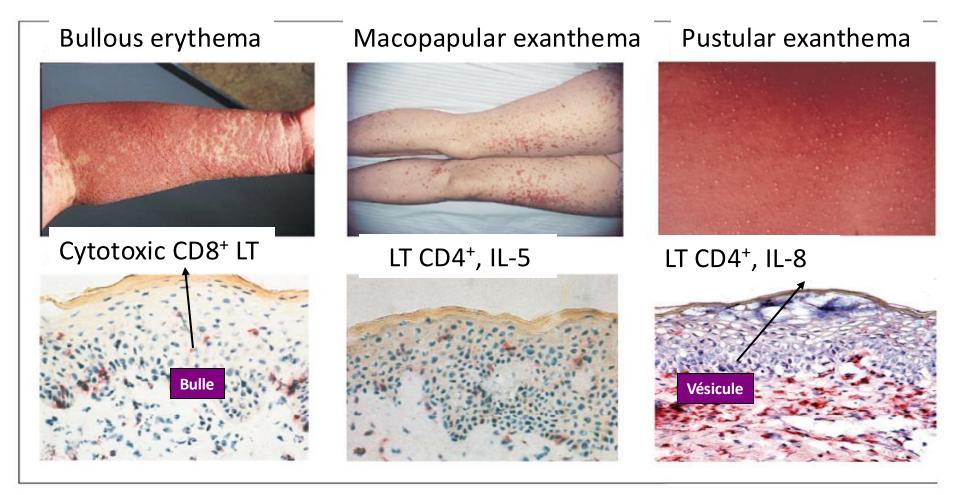
AGEP: Acute Generalised Exanthematous Pustulosis

TEN: Toxic Epidermal Necrolysis

PRODUCTS INVOLVED IN IMMUNOALLERGIC REACTIONS

Classification	Molecules
Hypersensibibilty type I (HSI)	Beryllium (alloys), Isocyanates (HSI) Trimellitic anhydride, β-lactams, sulfonamides
Hypersensibibilty type II (Type II)	Trimellitic anhydride, mercury quinine, quinidine nitrofurantoin penicillin
Hypersensibibilty type III	Trimellitic anhydride, mercury penicillins, sulfonamides, streptomycin
Hypersensibibilty type IV	DNCB, Beryllium, Chromium, Nickel penicillins, sulfonamides
Others	Sulfamides, anticonvulsivants, non-steroidal anti-inflammatory (NSAIDS)

EXEMPLES



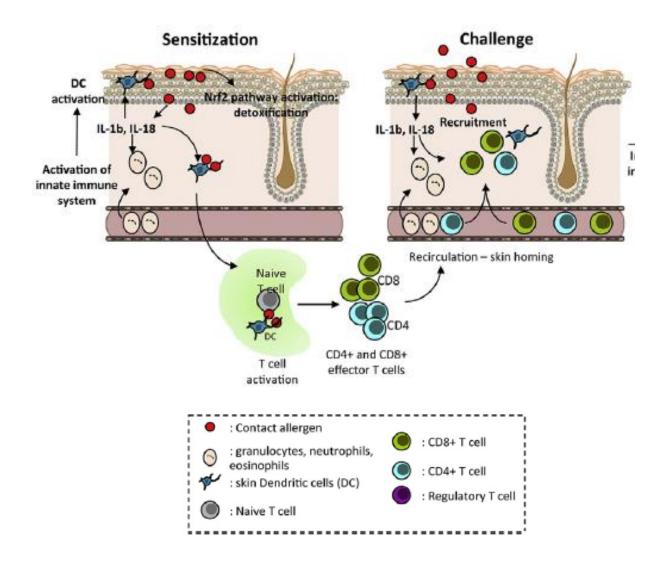
Plaster

Conservator *Methylisothiazolinone*

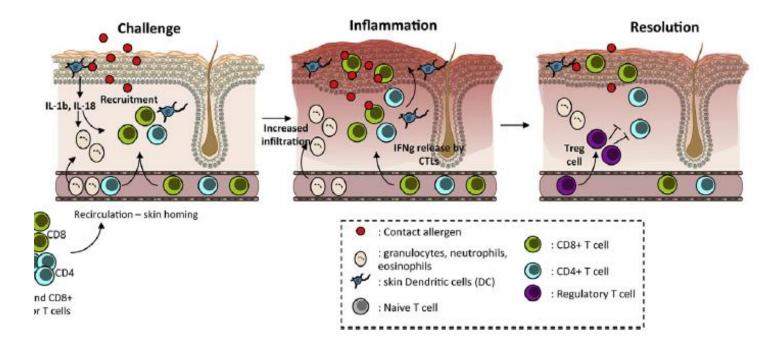
EXEMPLES

Various drugs can elicit distinct forms of T-cell-mediated drug reactions. For example, amoxicillin causes bullous skin disease (A), maculopapular exanthema (B), and acute generalized exanthematous pustulosis (C). Analysis of skin infiltrates and functional analysis of drug-specific T-cell clones from these different forms of drug allergy revealed distinct contribution of CD4⁺ and CD8⁺ T cells to these disorders, as well as distinct functions of CD4 cells. In maculopapular exanthema, CD4 cells dominate. More CD8⁺ T cells are found in patients with (mild) bullous skin disease, and these cells can kill keratinocytes (D). CD4 cells secrete high levels of interleukin-5 and substantial amounts of interferon-γ and can kill activated MHC class II–expressing keratinocytes (E). CD4⁺ and CD8⁺ T cells are found in patients with acute generalized exanthematous pustulosis (F); both these cells contribute to vesicle formation through their cytotoxic activity. CD4 cells secrete granulocyte-monocyte colony-stimulating factor and interleukin-8, which leads to the recruitment of neutrophils (54, 72, 74, 75, 78, 85). (Immunostaining by the avidin–biotin complex/alkaline phosphatase method; original magnification, ×250.)

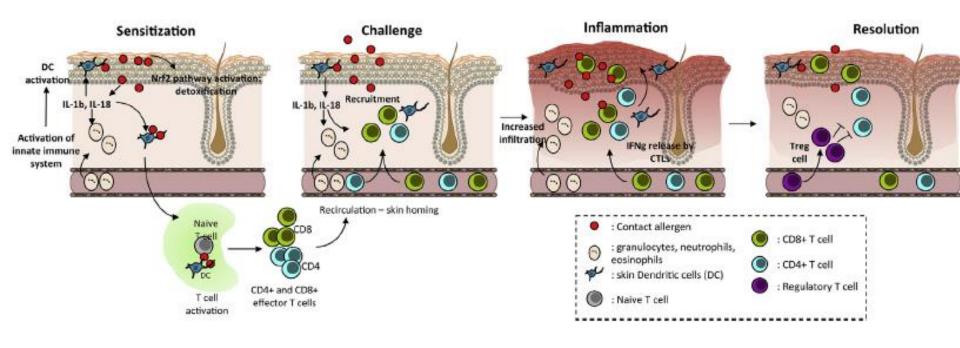
EXEMPLES

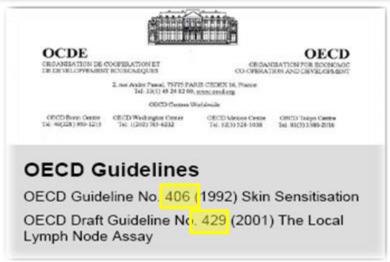


DRESS CD8+ cells/MHC class I association

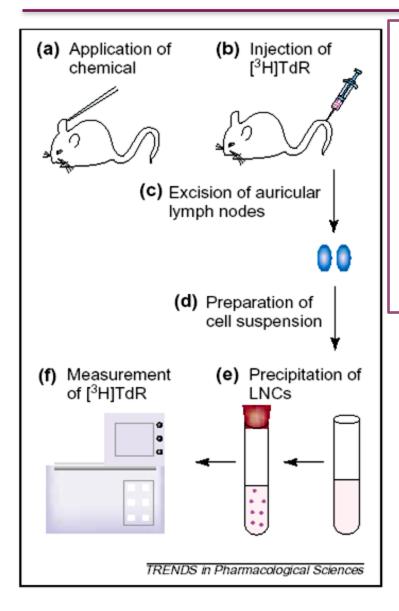

DRESS: **D**rug **R**eaction with **E**osinophilia and **S**ystemic **S**ymptoms

Ex: allopurinol

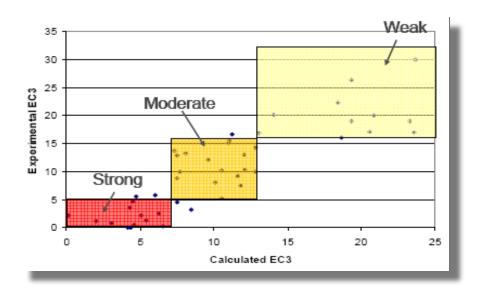

TYPE VI: ALLERGIC CONTACT DERMATITIS PATHOPHYSIOLOGY


TYPE VI: ALLERGIC CONTACT DERMATITIS PATHOPHYSIOLOGY

TYPE VI: ALLERGIC CONTACT DERMATITIS PATHOPHYSIOLOGY



EVALUATION METHODS: ANIMAL TESTING



Test	Positivity criterion
Guinea Pig Maximisation Test (GPMT) (OECD TG 406)	Positive response if ≥30% of animals tested
Buehler Test (OECD TG 406)	Positive response if ≥15% of animals tested
Mouse local lymph node assay (LLNA) (OECD TG 429)	Stimulation Index (IS)≥3
LLNA: DA (OECD TG 442A)	IS≥1.8
LLNA: BrdU-ELISA (OECD TG 442B)	IS≥1.6

EVALUATION METHODS: LLNA

- It measures the sensitization phase
 (Guinea pig test: measures the effector phase)
- The criterion is the lymphocyte proliferation phase
- It allows a quantitative evaluation lymphocyte proliferation in cpm
- Positivity and evaluation criteria:
 Stimulation index ≥ 3
 Dose-response

THE 3 ALTERNATIVE TESTS VALIDATED

OECD/OCDE

LD 442C

Adoptée: 4 février 2015

LIGNE DIRECTRICE DE L'OCDE POUR LES ESSAIS DE PRODUITS CHIMIQUES

Sensibilisation cutanée *in chemico* : essai de liaison directe sur la réactivité peptidique (DPRA)

OECD/OCDE

TG 442D

Adopted: February 2015

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method

OECD/OCDE

442E

Adopted: 29 July 2016

OECD GUIDELINE FOR THE TESTING OF CHEMICALS

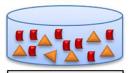
In Vitro Skin Sensitisation: human Cell Line Activation Test (h-CLAT)

Direct Peptide Reactivity Assay (DPRA, Procter & Gamble)

Sensitization phase Hapten **DPRA** Dendritic cells epidermis Keratinocytes Afferent lymph **Draining lymph node**

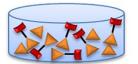
Test in chemico

- Study of the molecular event that initiates the AOP
- ECVAM recommendation in December 2013
- Validated by the OECD in February 2015 (TG N° 442C)
- Study of the reactivity of the tested chemicals towards synthetic peptide models containing either lysine or cysteine


according to Saint-Mezard, et al., Eur J Dermatol. 2004

DPRA

DPRA


Dendritic cells

Direct Peptide Reactivity Assay (DPRA, Procter & Gamble)

Peptides + Test Chemicals

Bound Peptides + Free Peptides + IS

UV Detector

Test in chemico

• Study of the molecular event that initiates the AOP

- Validated by the OECD in February 2015 (TG N° 442C)
- Study of the reactivity of the tested chemicals towards synthetic peptide models containing either lysine or cysteine

according to Saint-Mezard, et al., Eur J Dermatol. 2004

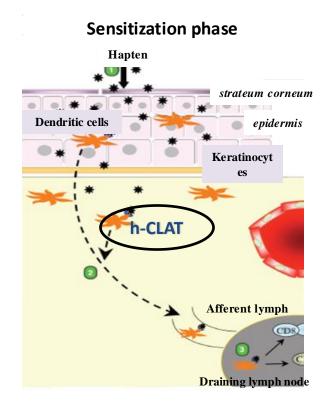
Sensitization phase

strateum corneum

epidermis

Keratinocytes

Afferent lymph


Draining lymph node

Hapten

HPLC Analysis

h-CLAT

Human Cell Line Activation Test (KAO, Shiseido)

D'après Saint-Mezard, et al., Eur J Dermatol. 2004

In vitro test: THP-1 cell line (pro-monocytic myeloid cell line)

- 3rd key event in PDO: dendritic cell activation
- ECVAM recommendations in March 2015
- Validated by the OECD in July 2016 (TG n° 442E)

OBJECTIVE

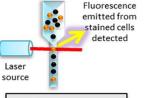
Measurement of cell surface marker expression:

CD86 = Facteur de co-stimulation lymphocytaire

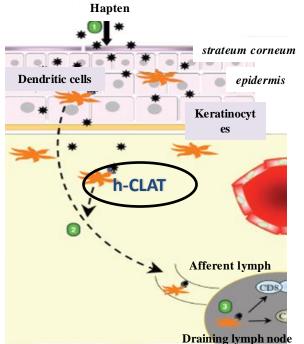
CD54 = Molécule d'adhésion

Human Cell Line Activation Test (KAO, Shiseido)

THP-1 Cells + Test Chemicals


Treated Cells + anti-CD54 & anti-CD86

Antibody-stained + Cell Viability-Stained Cells



Flow Cytometry Analysis

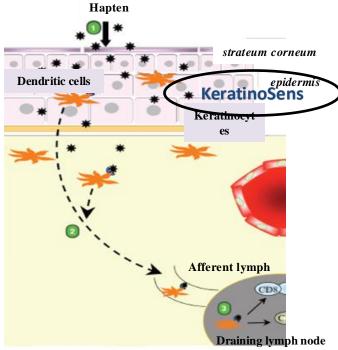
In vitro test: THP-1 cell line (pro-monocytic myeloid cell line)

- 3rd key event in PDO: dendritic cell activation
- ECVAM recommendations in March 2015
- Validated by the OECD in July 2016 (TG n° 442E)

Sensitization phase

OBJECTIVE

Measurement of cell surface marker expression:


CD86 = Facteur de co-stimulation lymphocytaire CD54 = Molécule d'adhésion

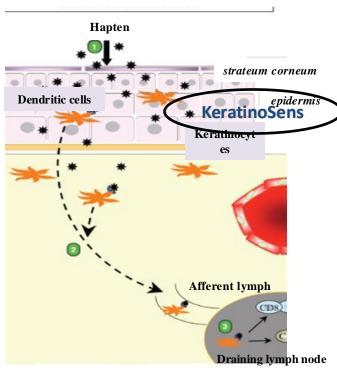
according to Saint-Mezard, et al., Eur J Dermatol. 2004

KeratinoSens

(Givaudan)

Sensitization phase

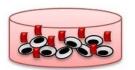
Test in vitro


- Study of the second AOP event
- Recommended by ECVAM in February 2014
- Validated by the OECD in February 2015 (TG N° 442D)
- Study of keratinocyte activation via the Keap1-Nrf2 pathway known to regulate the response to oxidative stress or electrophilic compounds,
- Use of the HaCaT cell line, immortalised human cells transfected with a selectable plasmid to quantify luciferase gene induction as a measure of Keap1-Nrf2 pathway activation

according to Saint-Mezard, et al., Eur J Dermatol. 2004

KeratinoSens assay

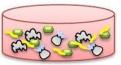
(Givaudan)

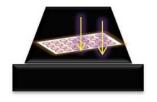

Sensitization phase

according to Saint-Mezard, et al., Eur J Dermatol. 2004

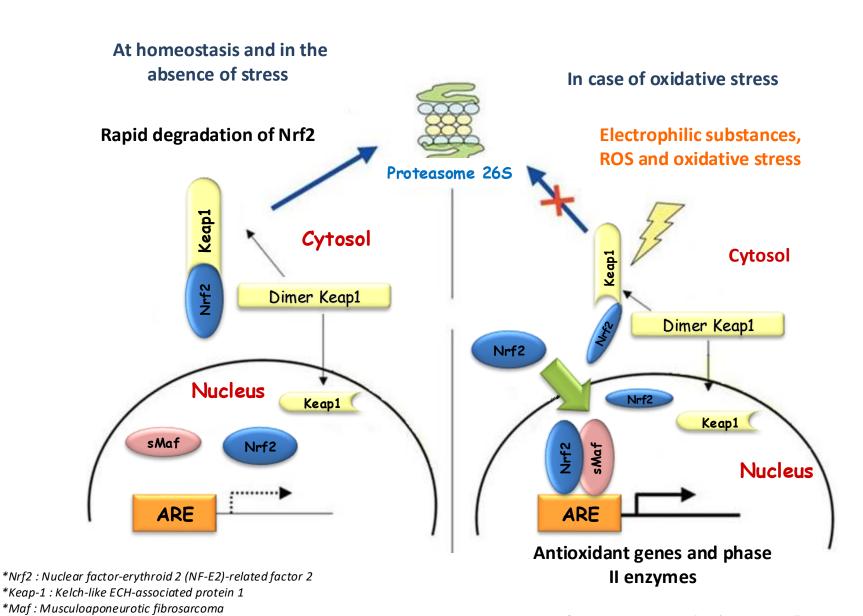
Test in vitro

- Study of the second AOP event
- Recommended by ECVAM in February 2014
 Validated by the OECD in February 2015 (TG N° 442D)
- Study of keratinocyte activation via the Keap1-Nrf2 pathway known to regulate the response to oxidative stress or electrophilic compounds,
- Use of the HaCaT cell line, immortalised human cells transfected with a selectable plasmid to quantify luciferase gene induction as a measure of Keap1-Nrf2 pathway activation

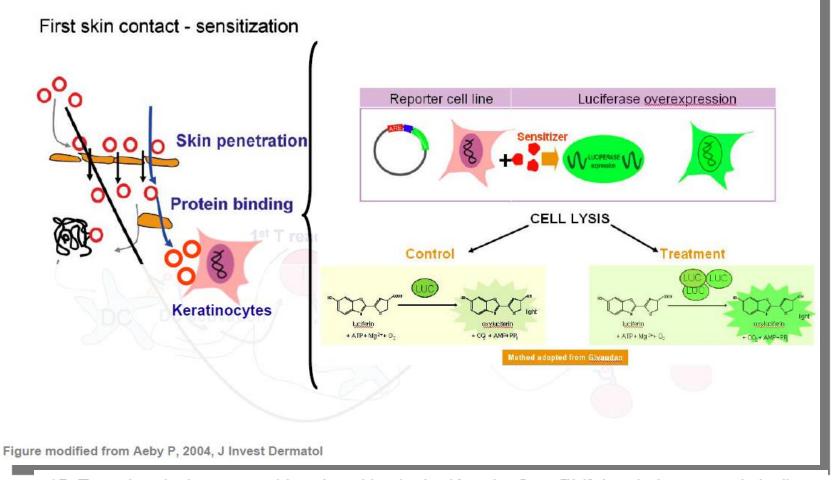

HaCAT Luciferase Reporter Cells + Test Chemicals


Treated Cells +
Lysis Buffer

Luciferase Substrates + Cell Viability-Stained Cells



Luminescent Detector


Nrf2/Keap1 pathway

*ARE: Antioxydant Responsive Element

From Watai Y et al., Genes to Cells 2007

KeratinoSens assay

15. Test chemicals are considered positive in the KeratinoSens™ if they induce a statistically significant induction of the luciferase gene above a given threshold (e.g., > 1.5 fold or 50% increase in the case of KeratinoSens™), below a defined concentration which does not significantly affect cell viability (e.g., below 1000 µM and at a concentration at which the cellular viability is above 70% in the case of KeratinoSens™ (9) (12)). For this purpose, the

PLAN

1. DEFINITIONS

- The different cells
- The different organs
- The immune response

2. HYPERSENSITIVITIES

- Definition of hypersensitivity
- The different tests

3. IMMUNOSUPPRESSION

- Definition of immunosuppression
- The different tests

Clinical consequences

- Infectious diseases
- Certain types of cancer

These pathologies are the consequence of a lack of regulation by the immune system.

COMMON TARGETS FOR LMWM ARE MOSTLY INTRACELLULAR ≠ BIOLOGICS

- T-cell Receptor signalisation
 - Cyclosporine A, Tacrolimus: Calcineurin inhibitors
- IL-2 signalisation : transplantation
 - Sirolimus: mTOR (IL-2 response)
- Alteration of lymphocyte trafficking: multiple sclerosis
 - Fingolimod (Gilenya®): sphingosine-1-phosphate receptor
- Inhibition of lymphocyte proliferation: auto-immune diseases, cancer
 - Azathioprine: purine metabolism
 - 6-mercaptopurine: purine metabolism
 - Mycophenolate mofetil: purine metabolism
 - Methotrexate: dihydrofolate reductase

IMMUNOSUPPRESSION AND BIOLOGICS: TARGETS ARE EXTRACELLULAR

- Soluble products: auto-immune diseases
 - Anti-TNF-alpha: adalimumab, infliximab, golimumab, certolizumab...
- T-cell Receptor signalisation: transplantation, cancer
 - Anti-CD3: Muromonab
- Cytokine signalisation: transplantation, autoimmune diseases
 - Anti-CD25: daclizumab, basiliximab
 - TNF-alpha: adilimumab, infliximab, certolizumab, golimumab
 - Anti-IL6 R: Tocilizumab
- Alteration of lymphocyte trafficking: multiple sclerosis
 - Anti- integrin a4 subunit : Natalizumab
- Lymphocyte proliferation/apoptosis: auto-immune diseases, cancer
 - Anti-CD20: Rituximab

TUMORS WITH HIGH INCIDENCE IN KIDNEY TRANSPLANTED PATIENTS

HHV: Human Herpes Virus

HSV: Herpes Simplex Virus

EBV: Epstein Barr Virus

HPV: Human Papilloma Virus

- Skin and lips cancer (HSV1 = HHV1)
 - 38% of total cancer in this population
 - 4 to 7 higher incidence/normal population
 - Sun exposure augments the incidence
- •Non-Hodgkin Lymphoma (EBV = HHV4)
 - 14 to 18% of total cancer in this population
 - 40 higher incidence/normal population
- •Kaposi Sarcoma (HSV8 = HHV8)
 - 4 to 6% of total cancer in this population
 - 400 à 500 higher incidence/normal population
- Cervical cancer (HPV16)
 - 15% of total cancer in this population
 - 14 higher incidence/normal population

one of the Key Characteristic (KE) of carcinogens

Table 1. Key characteristics of carcinogens.

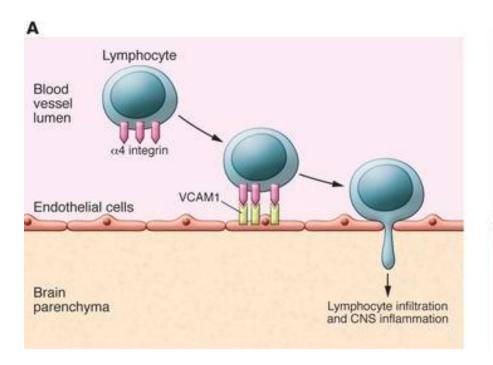
Characteristic	Examples of relevant evidence
Is electrophilic or can be metabolically activated	Parent compound or metabolite with an electrophilic structure (e.g., epoxide, quinone), formation of DNA and protein adducts
2. Is genotoxic	DNA damage (DNA strand breaks, DNA—protein cross-links, unscheduled DNA synthesis), intercalation, gene mutations, cytogenetic changes (e.g., chromosome aberrations, micronuclei)
Alters DNA repair or causes genomic instability	Alterations of DNA replication or repair (e.g., topoisomerase II, base-excision or double-strand break repair)
4. Induces epigenetic alterations	DNA methylation, histone modification, microRNA expression
5. Induces oxidative stress	Oxygen radicals, oxidative stress, oxidative damage to macromolecules (e.g., DNA, lipids)
6. Induces chronic inflammation	Elevated white blood cells, myeloperoxidase activity, altered cytokine and/or chemokine production
7. Is immunosuppressive	Decreased immunosurveillance, immune system dysfunction
 Modulates receptor-mediated effects 	Receptor in/activation (e.g., ER, PPAR, AhR) or modulation of endogenous ligands (including hormones)
9. Causes immortalization	Inhibition of senescence, cell transformation
10. Alters cell proliferation, cell death or nutrient supply	Increased proliferation, decreased apoptosis, changes in growth factors, energetics and signaling pathways related to cellular replication or cell cycle control, angiogenesis

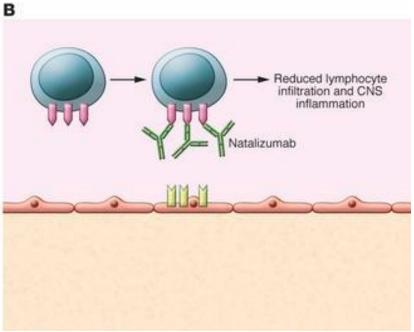
Abbreviations: AhR, aryl hydrocarbon receptor; ER, estrogen receptor, PPAR, peroxisome proliferator—activated receptor. Any of the 10 characteristics in this table could interact with any other (e.g., oxidative stress, DNA damage, and chronic inflammation), which when combined provides stronger evidence for a cancer mechanism than would oxidative stress along.

Perfluorooctanoic acid (PFOA) is immunosupressive and now classified as carcinogen to human (group 1, IARC)

Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert P, Hecht SS, Bucher JR, Stewart BW, Baan R, Cogliano VJ, Straif K. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect 124:713–721; http://dx.doi.org/10.1289/ehp.1509912

Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are extremely persistent chemicals that are widely distributed in the environment as a result of high chemical stability under normal environmental conditions and extensive use over the last 50 years in commercial and industrial applications including fluoropolymer manufacturing, food packaging, lubricants, water-resistant coating, and fire-fighting foams.

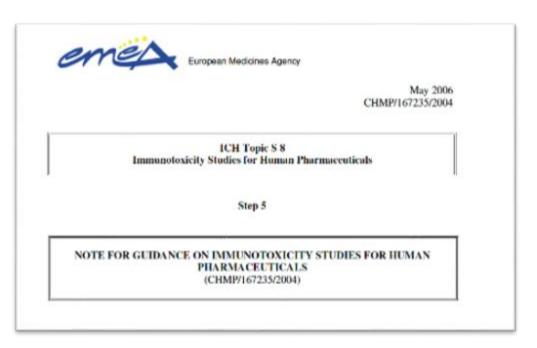

Non-stick products, waterproof and heat-resistant, PFAS have been widely used since the 1950s in a variety of industrial fields and everyday consumer products: textiles, food packaging, fire-fighting foams, non-stick coatings, cosmetics, phytosanitary products...


13

THE NATALIZUMAB (TYSABRI®) CASE: POST-MARKETING IMMUNOSUPPRESSION

- Humanized antibodies directed to $\alpha 4$ integrin sub-unit
 - $-\alpha 4\beta 7$ (VCAM, fibronectine) inhibition
- Indications: Multiple sclerosis
- NDA (New Drug Application) in November 2004
 - 3 months post-marketing: 2 cases of PML (progressive multifocal encephalopathy) with one death in patients receiving natalizumab + Avonex® (Interferon-beta) since 2 years
 - 3rd case in a clinical trial in Crohn disease
 - Cause = reactivation of the JC (John Cunningham) virus
 - Temporary withdrawn from the market and reintroduced in 2006
- 2017: cumulative risk of PML with a positive JCV serostatus following 72 natalizumab infusions is roughly 27 per 1000 with prior immunosuppressant exposure, and 17 per 1000 without

THE NATALIZUMAB (TYSABRI®)


- A) α4 integrin binds to vascular cell adhesion molecule 1 (VCAM1) on inflamed brain endothelium. This interaction gives lymphocytes access to the CNS. The presence of immune cells in the brain is a prominent feature of MS.
- B) Natalizumab, a humanized antibody against $\alpha 4$ integrin, blocks binding of lymphocytes to VCAM on inflamed brain endothelium, thereby preventing lymphocyte entry into the CNS.

IMMUNOSUPPRESSION AND TESTING

- ICHS8 "Immunotoxicity studies for Human pharmaceuticals" focuses on providing recommendations on nonclinical testing for unintended immunotoxicity induced by human pharmaceuticals
- Published 2005 to 2006
- Immunotoxicity is defined as "unintended immunosuppression or enhancement"
 - Hypersensitivity and auto-immunity are excluded
- Biologics are not included (discussed in ICHS6)
- ICHS8 is using a "weight of evidence approach"
 - If cause of concern conduct additional tests
 - Best before large scale clinical trials

ICH: International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use

PROTOCOLS - PRACTICAL CONSIDERATIONS

Objectives of the guideline

The objectives of this guideline are to provide

- (1) recommendations on nonclinical testing approaches to identify compounds which have the potential to be immunotoxic, and
- (2) guidance on a weight-of-evidence decision making approach for immunotoxicity testing.

Immunotoxicity is, for the purpose of this guideline, defined as unintended immunosuppression or enhancement. Druginduced hypersensitivity and autoimmunity are excluded

- CHOICE OF ANIMAL SPECIES
- LENGTH OF THE EXPERIMENT
- PHARMACOKINETIC PARAMETERS
- DOSES (3 doses, maximum dose less than or equal to the DMT)
- ROUTE OF ADMINISTRATION
- EX VIVO TESTS
- IN VITRO APPROACH POSSIBLE (MOUSE, RAT, MONKEY, HUMAN)

Rats and/or mice 28 days study

IMMUNOSUPPRESSION: TESTS

STATIC SETTINGS/PARAMETERS

- Blood count, blood formulation
- Thymus and spleen weight
- Cellularity thymus and spleen
- Histology of lymphocyte organs
- Lymphocyte subpopulations

DYNAMIC SETTINGS

- Cell proliferation (T cells, B cells)
- Cytotoxic T cells
- Antibody production
- Natural Killer activity
- Phagocytosis activity

EVALUATION OF IMMUNOSUPPRESSION: METHODS

Screen – Tier I

Immunopathology Hematology

Weights: body, spleen, thymus

Histology - spleen, thymus,

LN

Innate nonspecific immunity Natural Killer (NK) cell activity

Cell-mediated immunity Mixed lymphocyte reaction (MLR)

Lymphocyte blastogenesis to mitogens

Humoral-mediated immunity Enumeration of IgM antibody PFC

Lymphocyte blastogenesis to LPS

EVALUATION OF IMMUNOSUPPRESSION: METHODS

Comprehensive – Tier II

Immunopathology Quantitation of splenic B & T cells

Innate nonspecific immunity Macrophage function; quantitation of

resident peritoneal cells and

phagocytic activity

Humoral-mediated immunity Enumeration of IgG antibody PFC

Cell-mediated immunity Cytotoxic T lymphocyte (CTL) assay

Delayed-type hypersensitivity (DTH)

Host resistance challenge models Viral, bacterial, parasite, and syngeneic tumor cell models

EVALUATION OF IMMUNOSUPPRESSION: METHODS

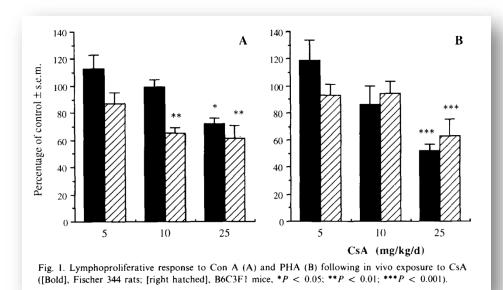
IMMUNOPATHOLOGY

- Numération, blood count, bone marrow examination
- Thymus and spleen weight.
- Thymus and spleen cellularity
- Histology of thymus and spleen
- Lymphocyte subpopulations

IMMUNE RESPONSE

- T cell proliferation (ConA, PHA, anti-CD3, allogeneic cells)
- Differentiation (cytotoxic lymphocytes)
- Production of antibodies
- B cell proliferation (LPS)
- Natural Killer activity
- Phagocytosis macrophages

PATHOLOGICAL ANIMAL MODELS


- Infectious (listeria monocytogenes, influenza...)
- Tumour

TESTS: IMMUNOSUPPRESSION

PROLIFERATION TEST

Splenocytes (2.10⁶ cellules/ml) Add mitogens or allogeneic cells (PHA, CONA, anti-CD3, LPS) Incubation 48 H, 37° C, 5%CO₂ Add Thymidine 3H-T (1mCi/puits) Incubation 6 à 8 heures

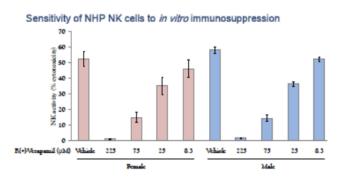
Measurement of 3H-T incorporation into DNA Proliferation curve

Concanavalin A (ConA) is a glycoprotein of the lectin family. It binds specifically by affinity to D-mannose

Phytohemagglutinin is a lectin present in plants.

and D-glucose

FUNCTIONAL TESTS - NK

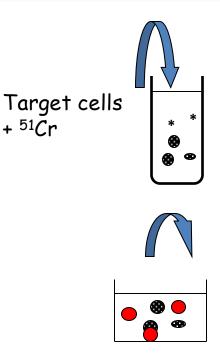

WHY NK cells?

- Evaluate innate immunity
 - ➤ NK cells kill tumor & virus-infected cells

Virus-Infected Cells NK cells Decreased Viral Growth Increased Activity Interferon-y T-cells **Macrophages** Induction of IL-2 and IL-2R Enhanced MHC expression Changes in delayed hypersensitivity Enhanced antimicrobial activity Changes in graft rejection Increased antitumor activity Enhanced suppressor cell activity Increased TNF a synthesis Altered IgG subclass production Enhanced cytoxicity Increased FcYR expression Decreased CD23 expression Migration Inhibition Decreased proliferation

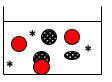
Decreased IgE production Counteracts effects of IL-4

- Serve as a "bridge" between innate and acquired immunity
 - NK cells are involved in a number of immunological processes

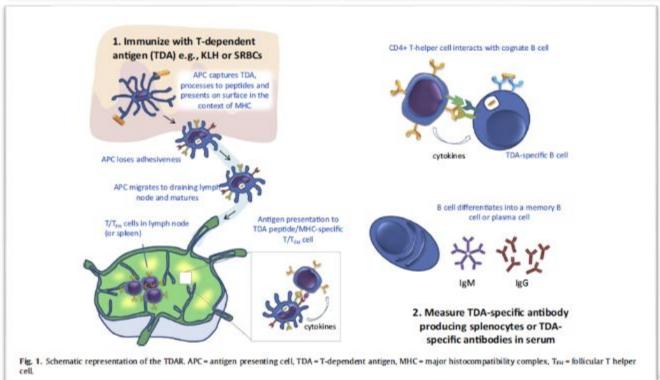

FUNCTIONAL TESTS - NK

Splenocytes
⁵¹Cr-labelled YAC cells (30 min)

Incubation of splenocytes with YAC cells for 4 hours, 37° C, 5% Co2 3 ratios (100:1, 66:1, 33:1)

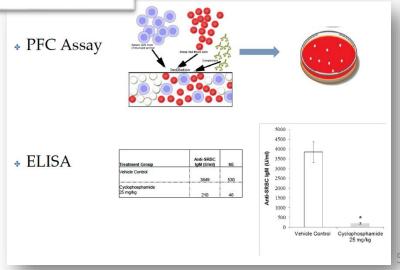

Measurement of ⁵¹Cr release in the supernatant (results expressed in cpm, % specific lysis, lytic unit)

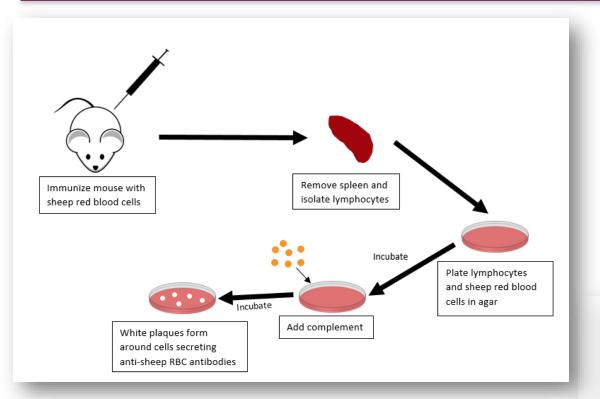
% cytotoxicity = $[(cpm_e - cpm_{sr})/cpm_{mr}-cpm_{sr})]x100$


Incubation 4h

Measurement of ⁵¹Cr release

YAC cells: NK cells


FUNCTIONAL TESTS - TDAR (T-DEDENDENT ANTIGEN RESPONSE)


Lebrec et al., Reg. Tox. Pharmcol, 2014

Keyhole limpet hemocyanin (KLH) is a large, multisubunit, oxygen-carrying, metalloprotein that is found in the hemolymph of the giant keyhole limpet *Megathura crenulata*

PLAQUE FORMING CELL ASSAY

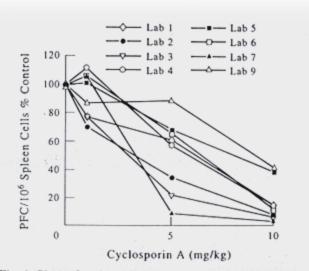


Fig. 1. Plaque-forming cell (PFC) response per 10⁶ spleen cells expressed as a percentage of the vehicle control value.

FUNCTIONAL TESTS — CTL

- 1. Splénocytes, lymphocytes
- 2. Culture of splenocytes in the presence of inactivated cells P815 (mouse mast cells) or WFUG1 (rat lymphoma) or Jurkat (human leukemia) FOR 5 DAYS
- 3. Recover activated lymphocytes.
 Incubate these lymphocytes with ⁵¹Cr labelled target cells 3 ratios of lymphocytes to target cells (50:1, 25:1, 12.5:1)
- 4. Incubate for 4 hours. Measure the radioactivity in the supernatants
- 5. Results are expressed as % cytotoxicity % Cytotoxicity = $(cpm_e-cpm_{min})/(cpm_{max}-cpm_{min})$

Exemples

IMMUNOSUPPRESSION (I)

Table 3 Body weights, organ weights and cellularity

Group	Survival (%)	Body weig	;ht	Organ weig	Organ weights				Cellularity (×10 ⁶ total nucleated cells/organ)		
		Average	Change	Spleen		Thymus		Spleen	Thymus	Bone	
		(g)	(g)	Averagea	Relative ^b	Average	Relative			marrow	
Naïve	100	164	29	0.384	0.235	0.252	0.154	240.8	297.4	38.2	
Vehicle	100	161	27	0.412	0.255	0.239	0.148	250.0	336.8	36.0	
AZA	93	141*	10*	0.335	0.239	0.091*	0.065*	190.8*	47.9*	32.1	
CY	100	143*	11*	0.273	0.190	0.048*	0.033*	52.7*	8.8*	28.1*	
CsA	100	164	32	0.416	0.254	0.221	0.134	246.5	343.2	39.0	

^a Average organ weight (n = 14, except AZA n = 13).

Lebrec et al. 1994, Fund. Applied Toxicology

Azathioprine: inhibits nucleotide biosynthesis

Cyclophosphamide: alkylating agent

Cyclosporine: cyclic immunomodulating polypeptide

^b Average organ weight relative to body weight (n = 14, except AZA n = 13).

^{*} Statistically significant change from naïve control (P < 0.05).

IMMUNOSUPPRESSION (II)

Table 5 Blood, spleen and thymus phenotype results

Tissue	Tissue Test article	Relative	Absolute (×10 ⁷	Absolute (×107 cells)					
		Average CD3 (%)	CD4 (%)	CD8 (%)	CD45R (%)	Average CD3	CD4	CD8	CD45R
Blood	Naïve	60.1	40.1	22.4	13.0	3.4	2.3	1.3	0.8
	Vehicle	59.8	40.5	22.5	15.6	3.4	2.3	1.3	0.9
	AZA ^a	59.7	39.7	21.2	11.5	2.3*	1.5+	0.8*	0.5*
	CYb	26.0*	14.9*	13.9*	0.8*	0.2*	0.1*	0.1*	0.0*
	CsA ^c	39.0*	26.8*	12.6*	11.5	1.2*	0.8*	0.4*	0.4*
Spleen	Naïve	44.0	25.2	21.0	19.5	4.5	2.6	2.1	2.0
	Vehicle	43.6	25.0	20.7	20.3	4.6	2.6	2.2	2.1
	AZA	43.3	24.5	20.3	20.6	3.2*	1.8*	1.5*	1.6
	CY	36.3*	17.8*	20.7	3.6*	0.3*	0.1*	0.2*	0.0*
	CsA	29.3*	15.9*	13.8*	23.9	2.5*	1.4*	1.2*	2.0
Thyrnus	Naïve	13.7	11.6	11.2	NA ^d	2.6	2.2	2.0	NA
-	Vehicle	13.6	11.7	11.0	NA	3.0	2.5	2.4	NA
	AZA	35.5*	26.6*	19.5*	NA	0.5*	0.4*	0.3*	NA
	CY	24.5*	21.0*	22.3*	NA	0.0+	0.0+	0.0*	NA
	CsA	1.4*	1.2*	1.3*	NA	0.3*	0.3*	0.3*	NA

^a Azathioprine.

b Cyclophosphamide.

^c Cyclosporin A.

d Not applicable.

^{*} Statistically significant difference from naı̈ve control (P < 0.05).

EXEMPLES

Table 6
Natural killer activity in B6C3F1 mice and Fischer 344 rats following in vivo exposure to CSA

CsA (mg/kg/day)	Fischer 344 rats		B6C3F1 mice		
	CsA blood concentration (M × 10 ⁻⁸)	$ \begin{array}{l} LU_{10}^{a} \\ (n=6) \end{array} $	CsA blood concentration (M × 10 ⁻⁸)	LU_{10}^{a} $(n=7)$	
0	0	26 ± 3	0	28 ± 3	
5	2 ± 0.2	21 ± 1 (83%) ^b	0.6 ± 0.1	19 ± 2* (68%)	
10	16 ± 2	24 ± 4 (93%)	1 ± 0.1	17 ± 4* (61%)	
25	50 ± 11	26 ± 3 (102%)	12 ± 1.6	19 ± 1* (68%)	

^{*}Values are expressed in lytic units 10% (LU10) ± S.E.M.

Table 7
Natural killer activity in B6C3F1 mice and Fischer 344 rats following in vitro exposure to CSA

	Cyclosporin	$IC_{50}(M)$			
	Vehicle	10 ⁻⁷ M	10 ⁻⁶ M	10 ⁻⁵ M	
Fischer 344 rats	37 ± 8a,c	25 ± 4 (68%) ^b	19 ± 2* (51%)	15 ± 5*** (40%)	$1.7 \times 10^{-6} M$
B6C3F1 mice	$24 \pm 8^{a,c}$	12 ± 4* (50%)	8 ± 1** (33%)	7 ± 1*** (29%)	$1.0 \times 10^{-7} \text{ M}$

^aValues are expressed in lytic units 10% (LU₁₀) \pm S.E.M.

Blot et al. 1994, Toxicology

bPercentage of control ± S.E.M.

^{*}P < 0.05.

^bPercentage of control ± S.E.M.

^cMean ± S.E.M. of three independent experiments.

P < 0.05;

^{**}P < 0.01;

^{***}P < 0.001.

EXEMPLES

Table 4
Cytotoxic T-lymphocyte activity in B6C3F1 mice and Fischer 344 rats following in vivo exposure to CSA

CsA (mg/kg/day)	Fischer 344 rats		B6C3F1 mice		
	CsA blood concentration (M × 10 ⁻⁸)	CTL activity ^a (n = 6)	CsA blood concentration (M × 10 ⁻⁸)	CTL activity ^a $(n = 7)$	
5	6 ± 0.7	97 ± 11	0.6 ± 0.1	109 ± 6	
10	23 ± 3	112 ± 5	1 ± 0.1	96 ± 9	
25	83 ± 7	66 ± 8**	12 ± 1.6	107 ± 4	

aValues are expressed as a percentage of control ± S.E.M.

Table 5
Cytotoxic T-lymphocyte activity in B6C3F1 mice and Fischer 344 rats following in vitro exposure to CSA

	Cyclosporin A	IC ₅₀ (M)		
	10 ⁻⁷ M	10 ⁻⁶ M	10⁻⁵ M	,
Fischer 344 rats	96 ± 18 ^{a,b}	55 ± 8**	12 ± 3***	1.27×10^{-6}
B6C3F1 mice	$87 \pm 3^{a,b}$	57 ± 2**	4 ± 2***	0.96×10^{-6}

^{*}Values are expressed as a percentage of control ± S.E.M.

^{**}P < 0.01.

^eMean ± S.E.M. of three independent experiments.

^{**}P < 0.01;

^{***}P < 0.001.

