UNIVERSITE PARIS-SACLAY

FACULTÉ DE PHARMACIE

Chemical carcinogenesis

Armelle Biola-Vidamment

armelle.biola-vidamment@universite-paris-saclay.fr

February 2025

Learning objectives

- 1. Define genotoxic and non-genotoxic carcinogens
- 2. Know the three stages of carcinogenesis: initiation, promotion, progression
- 3. Describe the phenotype of a tumour cell
- 4. Understand the role of oncogenes, the hallmarks of cancer
- 5. Explain the mechanisms of non-genotoxic carcinogenesis and give examples of molecules.

Agenda

Definitions

2 Stages of carcinogenesis

- Initiation
- Promotion
- Progression
- 3 Tumoral cell phenotype
- Oncogens
- 5 Non genotoxic (epigenetic) carcinogens
- 6 How to evaluate carcinogenic effects?

World Health Organization

IARC MONOGRAPHS CLASSIFICATION

Figure 1: N- nitrosodimethylamine (NDMA)

Crown	Commound	Mashanian of artist	Affected organs/	
Group	Compound	Mechanism of action	Cancer type	
Polycyclic	Benzo[a]pyrene	Form adducts with purine	Skin, lungs, stomach	-
aromatic	Polychlorinated biphenyls	bases of DNA, mainly	Liver skin	
hydrocarbons	(Luch 2005)	resulting on transversions		
Aromatic	2-Acetylaminofluorene	Genotoxic compounds,	Liver, bladder	-
amines/amides	4-Aminobiphenyl	increase the rate of	Bladder	
	2-Naphthylamine	cell duplication	Bladder	
	(Luch 2005)			
Aminoazo	o-Aminoazotoluene	Forms adducts with	Liver, lungs, bladder	-
dyes	N, N-dimethyl-4-	DNA and with	Lungs, liver	
	aminoazobenzene	haemoglobin		
	(Golka et al. 2004)			
N-nitroso	N-Nitrosodimethylamine	Form adducts at N- and	Liver, lungs, kidneys	-
compounds	(Drablos et al. 1998)	O-atoms in DNA bases		
Carbamates	N-methylcarbamate esters	Chromosome aberration,	Experimental results	-
	(Wang et al. 1998)	gene mutation,	showed liver, kidneys	
		cell transformation	and tests degeneration	
Halogenated	Trichloroethylene	Somatic mutations,	Experimental results	-
compounds	(Lock et al. 2007)	modification of cell	showed kidney, liver	
		cycle pathways	and lung cancer	_
Natural	Aflatoxin B1	Forms adducts with	Liver	-
carcinogens	(Wild et al. 1986)	guanine, react with	Lungs	
	Asbestos (Luch 2005)	RNA and proteins		_
Metals	Arsenic (Shi et al. 2004)	Oxidative stress	Skin, lungs, liver	-
	Cadmium (Hartwig et al. 2002)	Inhibit DNA repair	Lungs, prostate,	
		pathways and nucleotide-	kidneys	
		excision repair		
	Nickel (Costa et al. 2003)	Histone acetylation	Lungs, nasal cavity	
		and DNA hypermethylation		_
Anticancer	Alkylating agents	Interstrand and/or	Leukaemia	-
drugs	(Luch 2005)	intrastrand cross-links		nversite

TABLE II Chemical carcinogens.

Oliveira et al, Annals of the Brazilian Academy of Sciences, 2005

Many mutagens are also carcinogens, but some carcinogens are not mutagens.

1 Definitions

- Genetic carcinogens (genotoxic)
- Detectable by mutagenesis studies.
- Causes **DNA damage**.
- All or nothing effect, no threshold.

Epigenetic carcinogens

- Not detectable by mutagenesis studies.
- Cause no damage to the DNA.

- Reversible modifications in the activity of genes, leading to a **modification of their expression**. Epigenetic processes are involved in the regulation of numerous events such as cell division, differentiation, survival, mobility, etc. The alteration of these mechanisms can favour the transformation of healthy cells into cancerous cells.

- Dose effect, threshold, reversible.

Non-threshold toxic effects

These xenobiotics are essentially genotoxic.

For these substances, it is considered that the initiation of carcinogenesis or an effect on offspring is triggered by **mutations** in the genetic material (DNA).

Threshold toxic effects

They concern substances which, above a certain dose, cause damage whose severity is proportional to the absorbed dose.

According to this classical approach, toxic effects only occur if this dose is reached and exceeds the detoxification, repair or compensation capacities of the organism.

NOAEL : no observed adverse effect level

PARIS-SACLAY

FIGURE 2. ROLES THAT CELL PROLIFERATION AND DNA REPAIR PLAY IN THE MULTISTAGE CARCINOGENIC PROCESS OF INITIATION, PROMOTION, CONVERSION, AND PROGRESSION (ADAPTED FROM IARC, 1992)¹⁴

2 Carcinogenesis stages

TABLE 5. Stages of carcinogenesis induced by specific agents

Class ^a	Example	Stage (or stages)
I	Diethylnitrosamine, aflatoxin B ₁ , 2-naphthylamine, 2-acetylaminofluorene, methylcholanthrene, urethane, tobacco smoke	Initiation, promotion, progression
	Phenobarbital, tetradecanoylphorbol acetate, dietary fat and calories, ethanol	Promotion (progression)
	Prolactin, estrogens, and androgens	Promotion
	Foreign body, asbestos, benzene, potassium arsenite, diethylstilbestrol	Progression
II	Ionizing radiation (UVB and UVC)	Initiation, progression
	UVA radiation	Promotion
III	Papova, retro, and Epstein-Barr viruses	(Promotion) progression
	Herpes and hepadna viruses	Progression
IV	Transgenesis	(Promotion) progression
	Selective breeding	Initiation, promotion, progression

⁴From Table 1.

universit

PARIS-SACLAY

e

2 Carcinogenesis stages

Stage	Caracteristics
Initiation	Results from an irreversible genetic alteration, most likely one or more simple mutations, transversions, transitions, and/or small deletions in DNA.
Promotion	Does not involve changes in the structure of DNA but rather in the expression of the genes. Reversible .
Progression	Irreversible karyotypic instability and malignant growth

- Initiating agent administration
- Promoting agent administration

1. Loss of contact inhibition Development of proliferative foci

2. Ability to proliferate in the presence of low concentrations of growth factors. 3. Ability to grow in the absence of support

(development of colonies in semi-solid medium).

Soft-agar Colony Formation Assay (Clonogenic Assay) of the MBC1 (A) and MBC2 (B) Cell Lines at 14 Days after Seeding. Magnification, 10X. Kamalidehghan *et al* 2012

4. Tumor formation in nude mice.

3 Tumoral cell phenotype Epithelial-mesenchymal transition (EMT)

Morandi et al, Front. Oncol 2017

3 Tumoral cell phenotype

Hanahan and Weinberg, Cell, 2000.

- Genes which, when expressed in a disordered manner or when their structure is altered, contribute to the transformed phenotype of a cell.
- Code for proteins with a wide range of functions (transcription factors, transcriptional activators or repressors, proteins involved in chromatin remodeling).
- Play a role in cell proliferation and survival such as the anti-apoptotic protein BCL-2, growth factor receptors, intracellular effectors of signal transmission such as proteins of the Ras family and intracellular tyrosine kinases.

Oncogens

The Ras V12 mutation decreases the GTPasic activity of Ras, **keeping it in an active state related to GTP**.

Vasan et al, 2014

The Philadelphia chromosome results when a piece of chromosome #9 switches places with a piece of chromosome #22. The translocation forms an extra-long chromosome "9 (called der 9) and an extra-short chromosome #22, which is the Philadelphia chromosome that contains the abnormal, fused BCR-ABL gene.

Many non-genotoxic agents are capable of inducing tumors in laboratory animals and are therefore considered as carcinogens.

Most of the chemicals belonging to this group were previously classified as **promoters**.

E.g. chlorinated polycyclic hydrocarbons such as **dioxin** (**TCDD**).

5 Non-genotoxic carcinogens

TCDD is a potent promoter of liver tumors in rats after initiation with N-nitrosodiethylamine (Pitot *et al*, 1980).

Liver tumor promotion by TCDD. Female Charles River rats were partially hepatectomized (p.h.) and treated 13 h later with (A) saline, or (B) with an initiating dose of 10 mg/kg NDEA by intragastric intubation.

After **28 weeks** of treatment with **Phenobarbital**, Pb (0.05% in the diet) or **TCDD** (biweekly s.c. injections in corn oil) or **vehicle alone** (0), livers were examined by histomorphometry for development of altered hepatic foci.

Hepatocarcinoma and hepatic nodules were diagnosed by histopathological criteria and the sum of both is given right to the bars as number of rats with tumors/number of rats examined.

5 Non-genotoxic carcinogens Peroxisome proliferators

Drugs	Pesticides	Chemical products	
AspirineFibrates (fenofibrate, clofibrate)	Diméthrine HaloxyFOP Lactofen	Dibutylphtalate Perchlorethylène Trichlorethylène	

Hepatocytes

Dosage

20 mg/d (0.3 mg/kg, Ulcer), up to 60 mg/d (1 mg/kg, Zollinger-Ellison).

• Chronic toxicity studies

Reversible hyperplasia of the gastric mucous membrane cells, thickening of the mucous membrane (dog 1 year study: 28 mg/kg, rat 6 months study: 138 mg/kg).

• Carcinogenesis

Mouse: negative results (max dose 138 mg/kg).

Rat: enterochromaffin cell hyperplasia and gastric tumors from 1.7 mg/kg in females. Suspension of clinical trials.

• Is omeprazole a direct carcinogen?

Mutagenesis tests: negative. Inhibition of gastric acid secretion plasma gastrin trophic effects on gastric mucosa. Treated patients: plasma gastrin x 1.3 to x 3.6

6 How to evaluate carcinogenic effects?

Experimental studies

Vimentin

EMT

Soft agar clonogenic test

Tumor development in nude mice

SHE test

E-cadherin

Genotoxic carcinogens Mutagenesis studies (regulatory battery)

Non-genotoxic carcinogens Carcinogenesis studies in rodents

S1A-C

Long-term study in rodents and

A complementary rodent study of shorter duration (e.g. transgenic models) Or A second carcinogenesis study in a second rodent species.

> UNIVERSITE PARIS-SACLAY

The standard rodent protocol

- Species/strain:
- Age:
- Duration of study:
- Route of administration
- Frequency
- Nb of groups
- Nb of animals

- ⇒ Sprague-Dawley rats
- ⇒ CD1 mice
- ⇒ At weaning
- ⇒ 24 months (rat)
 ⇒ 18 to 24 months (mice)
- ⇒ Gavage or in food (same route of administration as in humans)
- ⇒ 7 days/week
- ⇒ 1 or **2** controls, 3 doses
- $\Rightarrow \geq 50/sex/group$

The standard rodent protocol

- **Clinical signs:** Daily (mortality); thorough, once a week
- Behaviour: Weekly
- Palpable masses: Monthly to weekly
- Body weight: Weekly
- Histopathology: All animals

The high dose

Defined as follows:

- Toxic but not life-threatening
- Causes a **decrease in weight gain ≤ 10%**
- Ensuring exposure ≥ 25 times the therapeutic (maximum) dose exposure

PRODUCT CARCINOGENIC IF:

1. Presence of tumor types not found in the control sample

2. Increased tumor incidence compared to control sample (same tumor type)

3. Early tumor development compared to controls

Oral Carcinogenicity Study in Kats												
Document Control Number:	Test Article:											
Daily Dose (mg/kg)	(0) Control		0 (Control)		0.003	0.01	0.02	0.06	0.2	0.4	1.4	2.6
Number of Animals	M:60	F:60	M:60	F:60	M:60	F: 60	M:60	F:60	M:60	F:60	M:60	F:60
Food Consumption (% ^b) (g/kg/day)	46	58	+2	0	+4**	+2	+7**	+3	+7**	+7**	+9**	+9**
<u>Histopathology - Neoplastic</u> <u>Lesions</u> ^c			·									
Brain, malignant glioma	0	0	0	0	1	0	1	1	2	0	4 #	3 #
malignant oligodendroglioma	0	0	0	0	0	0	0	0	0	0	0	1
Kidney, oncocytoma	0	0	0	0	0	0	0	0	0	0	2 #	0
malignant mesenchymal tumor	0	0	0	0	0	0	0	0	0	0	2 #	0
Liver, hepatocellular adenoma	0	0	0	1	0 (59)	2 (57)	1	3	0	1	1	8 #
hepatocellular carcinoma	0	0	0	0	0 (59)	0 (57)	1	0	0	0	J	3 #
Pancreas, acinar adenoma	0 (59)	0	0 (58)	0	0 (59)	0	0 (59)	0	2	0	2	0
acinar carcinoma	0 (59)	0	0 (58)	0	0 (59)	0	0 (59)	0	0	0	1	0
mixed islet-acinar cell neoplasm	0 (59)	0	0 (58)	0	0 (59)	0	0 (59)	0	0	0	1	0
Skin, fibroma	1 (59)	0	1	0	0	0	1	1	2 (59)	2 (57) [#]	1 (59)	3

Abbreviations: - No noteworthy findings; • - Not evaluated. Statistical Analysis: * <0.05 ** - p<0.01 Dunnett's Test; [#] - Denotes statistical significance by Peto analysis.

Document Control Number:						Test Article:							
Daily Dose (mg/kg)	(0) Control		0 (Control)		0.004		0.04		0.4		4.0		
Number evaluated	M:60	F:60	M:60	F:60	M:60	F:60	M:60	F:60	M:60	F:60	M:60	F:60	
Histopathology - Neoplastic													
Lesions													
Liver													
hepatocellular adenoma	. 8	0	4	2	4 -	0	2	1	8	0	7	2	
hepatocellular carcinoma	1	0	0	0	1	0	3	1	2	0	8 #	, _0	
Lung													
bronchioloalveolar adenoma	4	9	4	6	8	5	11 (58) [#]	4	17 #	16	20 #	15 #	
bronchioloalveolar carcinoma	3	3	3	5	4	3	4 (58)	2	7	5	15 #	16 #	
combined bronchioloalveolar tumors	7	12	7	11	12	8	15 (58) [#]	6	24 #	21 ^d	35 ^{#,d}	31 ^{#,d}	
Ovary													
hemangioma	•	3	•	3 (58)	•	6 (59)	•	7	•	5	٠	19 #	
Parotid salivary gland													
ductal adenoacanthoma	0 (59)	0	0	0	0	0 (59)	0 (59)	0 (59)	0	0	0	2 (58)	

Oral Carcinogenicity Study in Mice

Abbreviations: ♦ - Not evaluated. Statistical Analysis: * - P<0.05 ** - P<0.01 Dunnett's Test; [#] - Denotes statistical significance by Peto analysis. All footnotes are available as table end notes.

