

Strategies for control of parasite vectors and impact on ecosystems

International Master TU N°02, Infectiology Sébastien POMEL 2025

Vector-borne diseases

- → human diseases caused by parasites, viruses and bacteria that are transmitted by vectors
- \rightarrow More than 17% of all infectious diseases
- ightarrow Causing more than 700 000 deaths annually

- → Many vector-borne diseases can be prevented, through protective measures, and community mobilization
- → The burden of these diseases → highest in tropical and subtropical areas affecting the poorest populations
- \rightarrow Distribution of vector-borne diseases

→ Determined by a complex set of demographic, environmental and social factors including travels, trade, urbanization, ...

What are parasite vectors?

 \rightarrow Parasite vectors are hematophagous Arthropods that

- → ensure the active biological or mechanical transmission of parasites between humans, or from other vertebrates to humans (*Rodhain et Pérez, 1985*)
- → Ingest parasites during a blood meal from an infected host (human or animal) and later transmit it into a new host, after the parasite has replicated

 \rightarrow Intermediate hosts such as snails in the life cycle of schistosomiases are not vectors because they only have a passive role (parasites go in and go out them without an active action from their part)

→ Often, once a vector becomes infectious
 → Able to transmit the parasite for the rest of its life during each subsequent bite/blood meal

Parasitic diseases transmitted by vectors

mosquitoes

- Chagas disease \rightarrow transmitted by triatomine bugs
- Leishmaniasis \rightarrow transmitted by sandflies (*Phlebotomus sp/Lutzomia sp*)
- Human African trypanosomiasis \rightarrow transmitted by Tse-tse flies (*Glossina sp*)
- Lymphatic filariasis \rightarrow transmitted by *Aedes* mosquitoes
- Onchocerciasis \rightarrow transmitted by black flies (Simulium sp)

Viral diseases transmitted by vectors

- Dengue \rightarrow the most prevalent viral infection
- → transmitted by *Aedes* mosquitoes
 - → more than 3.9 billion people in over 129 countries are at risk, with an estimated 96 million symptomatic cases and an estimated 40,000 deaths
 - every year
- Chikungunya fever
- Zika virus fever
- Yellow fever

Aedes aegypti

Aedes albopictus

- West Nile fever
- Japanese encephalitis (all transmitted by mosquitoes)
- Tick-borne encephalitis (transmitted by ticks)

Non-exhaustive list of vector-borne diseases according to their vector

<u>Vector</u>		Disease caused	Type of pathogen
Mosquito	Aedes	Chikungunya	Virus
		Dengue	Virus
		Lymphatic filariasis	Parasite
		Rift Valley fever	Virus
		Yellow Fever	Virus
		Zika	Virus
	Anopheles	Lymphatic filariasis	Parasite
		Malaria	Parasite
	Culex	Japanese encephalitis	Virus
		Lymphatic filariasis	Parasite
		West Nile fever	Virus
Blackflies		Onchoceriasis (river blindness)	Parasite
Fleas		Plague (transmitted from rats to humans)	Bacteria
		Tungiasis	Ecto parasite
Lice		Typhus	Bacteria
		Louse-borne relapsing fever	Bacteria
Sandflies		Leishmaniasis	Parasite
		Sandfly fever (phlebotomus fever)	Virus
Ticks		Crimean-Congo haemorrhagic fever	Virus
		Lyme disease	Bacteria
		Relapsing fever (borreliosis)	Bacteria
		Rickettsial diseases (eg: spotted fever and Q fever)	Bacteria
		Tick-borne encephalitis	Virus
		Tularaemia	Bacteria
Triatome bugs		Chagas disease (American trypanosomiasis)	Parasite
Tsetse flies		Sleeping sickness (African trypanosomiasis)	Parasite

Present situation in the world

- → Since 2014, major outbreaks of:
 - \rightarrow dengue
 - \rightarrow malaria
 - \rightarrow chikungunya
 - \rightarrow yellow fever
 - \rightarrow Zika

FACTORS INFLUENCING EMERGING & RE-EMERGING VECTOR BORNE DISEASES

→ afflicted populations (high mortality) and saturated health systems in many countries

ightarrow Other diseases such as leishmaniasis and lymphatic filariasis

- \rightarrow cause chronic suffering
- \rightarrow life-long morbidity
- \rightarrow disability
- ightarrow occasional stigmatization

Sanitization methods

Objectives :

 \rightarrow Limiting the proliferation of arthropods populations

 \rightarrow Reducing contacts between arthropod populations and human population

→ Need hygienic measures

Means :

 \rightarrow Risk identification

 \rightarrow Monitoring and surveillance of vectors

 \rightarrow Trapping systems for capturing vectors

 \rightarrow Track the presence of a vector among a population

- → Detect the introduction of an exotic vector in an area previously free of this vector
- \rightarrow Track the population diffusion after insecticide use
- → Determine vector abundance in order to appreciate the risk of parasite transmission
- \rightarrow Study of transmission models
 - → Theoretical density threshold below which parasite transmission is not possible anymore

Sanitization methods

- \rightarrow Risk identification
 - \rightarrow Monitoring and surveillance of vectors
 - \rightarrow Trapping systems for capturing vectors
 - → Light traps (mosquitoes and sandflies)

 \rightarrow CO₂ traps (mosquitoes)

Sanitization methods

- \rightarrow Risk identification
 - \rightarrow Monitoring and surveillance of vectors
 - \rightarrow Trapping systems for capturing vectors
 - → Oiled papers /flypaper (= a long strip of sticky paper hung in a room to catch flies or other insects)

→ Traps of ultraviolet light (culicoides)

Sanitization methods

- \rightarrow Risk identification
 - \rightarrow Monitoring and surveillance of vectors

 \rightarrow Trapping systems for capturing vectors

- → Dragging/flagging (for ticks)
 - → This method is based on passing a 1-m² white tissue over the vegetation and checking the tissue for the presence of caught ticks every 5–10 m.

Sanitization methods

→ Risk identification
 → Monitoring and surveillance of vectors

 \rightarrow Trapping systems for capturing vectors

→ Tsetse fly traps (non-return device)

- → Biconical blue and black trap (Challier-Laveissière system)
 → Blue color (external): attractive
 → Black color (internal): stimulates landing
 - → Black color (internal): stimulates landing
 - \rightarrow Attractive odors:
 - → Acetone, octenol, ruminant urine

Sanitization methods

- \rightarrow Risk identification
 - \rightarrow Monitoring and survey of vectors
 - \rightarrow Vector survey : example of mosquitoes
 - → Collecting and identifying aquatic larvae and nymphs of mosquitoes
 - → Possibility to control vector populations

Diagnostic: Eggs: -Larvae : +++ Nymphs: -Adults: +++

Sanitization methods

 \rightarrow Risk identification

- \rightarrow Monitoring and survey of vectors
- \rightarrow Vector survey : example of mosquitoes

\rightarrow Lifetime of a mosquito

- \rightarrow In laboratory (optimized life conditions): 8 to 10 months
- ightarrow In the field
 - ightarrow Limitations by enemies
 - \rightarrow Predators: birds, bats, others arthropods
 - \rightarrow Pathogens: protists, fungi, viruses
 - \rightarrow 10% mosquitoes have a lifetime > 10 days
 - \rightarrow Few of them survive more than 1 month

Sanitization methods

→ Risk identification
 → Monitoring and survey of vectors

\rightarrow Development of mosquitoes

ightarrow 8-10 days as a function of species and temperature

 \rightarrow As a function of soil nature, rainfall patterns, temperature, altitude, natural vegetation

ightarrow Easy adaptation in urban areas

\rightarrow Mosquito breeding grounds

ightarrow Stagnant water areas, not too cold

 \rightarrow Female anophele lifetime

ightarrow About 30 days between 20 and 30° C

Physical methods

 \rightarrow Aim: Diminution of human-vector contacts

Insecticide-treated bed net → Pyrethroids: Deltamethrin or permethrin

→ Resistant to about 50 washes

- →Impregnated uniforms
- \rightarrow Anti-insect grids on windows and doors

Physical methods

\rightarrow Aim: Reduction of human-vector contacts

- → Light traps (UV), electric grids releasing octenol, sticky bands + attracting food or pheromones
 - ightarrow Against tsetse flies and Tabanidae
 - \rightarrow Catching from 1 to 2 kg tsetse flies

Ecological methods

\rightarrow Aim:

 \rightarrow Create adverse environmental conditions for vector/intermediate host development

ightarrow Health education and population participation are essential

Examples:

- Drain swampy areas (against mosquitoes and molluscs)
- Clear river banks (against black flies)
- Dry irrigated areas (against mosquitoes)
- Maintenance of canal irrigiation (against molluscs)
- Pasture rotation (against ticks)
- Remove aquatic plants (against fluke)
- Improve housing (against Reduviid bugs)

Ecological methods

- \rightarrow Aim: Reduction of human-vector contacts
- Enabling environment → creating adverse conditions for vector/intermediate host survival and outbreak

Other examples:

- Choose adapted home water storage \rightarrow unfavorable for mosquito development
- Introduce fresh water turtles

 \rightarrow eat mosquitoe larvae

- Remove abandoned containers or cover them (against mosquitoes)
- Ensure efficient waste pickup → limiting rat populations (leptospirosis), small rodents (leishmaniases)
- Install latrines → adapted to control mosquito development (against Aedes aegypti / styrofoam balls → preventing egg laying)
- Remove leafy plants and clogg hollows of trees (against mosquitoes)
- Maintenance of rainwater and wastewater evacuation systems
- Intra-housing control: container of black colour + water + Teepol (surfactant) → larvicidal effect

Chemical methods

 \rightarrow Aim: Use of natural or synthetic substances having insecticide activity

- Diversity of compounds and ecological impact
 - Before 1940 :
 - Compounds of mineral origin : derivatives of arsenic, sulphur, fluorine and copper
 - Organic compounds
 - Synthetic: alkyle thiocyanates
 - Natural origin: nicotine, rotenone, pyrethrum, ...

Chemical methods

- → Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
- From 1940 to 1960 :
 - Halogenated organic compounds (organo-chlorine compounds) :
 - DDT (dichloro-diphenyl-trichloethane)
 - ightarrow First « modern » insecticide used at the beginning of the second world war
 - \rightarrow Very efficient against :
 - \rightarrow Mosquitoes \rightarrow vectors of malaria
 - \rightarrow Lice \rightarrow vectors of typhus (provoked by bacteria \rightarrow *Rickettsia*)
 - \rightarrow Used in agriculture against insect pests
 - → Mechanism of action on insects
 - ightarrow Opening sodium channels in insect neurons
 - \rightarrow Spasms, then death
 - ightarrow Resistances as a consequence of genetic mutations
 - \rightarrow Ecological impact
 - ightarrow Toxicity for birds and fishes
 - ightarrow Accumulation in the food chain
 - \rightarrow WHO policy : tolerance for indoor use in malaria high-endemic areas
 - Discontinuance of DDT was planned for 2020...
 - \rightarrow DDT \rightarrow contributed to malaria disappearance in Europe and North America at the end of the XIXth century

С

Chemical methods

- \rightarrow Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
- From 1940 to 1960 :
- Halogenated organic compounds (organo-chlorine compounds) :
 - HCH (hexachlorocyclohexane) or lindane
 - \rightarrow Forbidden in France
 - ightarrow Prohibition in the world in the near future
 - → Use
 - \rightarrow Domestic use: against insects
 - → Human treatment against mange (Sarcoptes scabiei) and lice
 - ightarrow Treatment of cattle against ticks
 - \rightarrow Mechanism of action
 - \rightarrow Inhibitor of GABA receptor
 - Cyclodienes (aldrin, chlordane, heptachlor), chlorinated camphenes (endosulfan) (discontinued: non- or few-biodegradable, toxic)
 - \rightarrow Mechanism of action :
 - ightarrow Cyclodienes : inhibitors of GABA receptors

Chemical methods

- → Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
- From 1960 :

Malathion

Parathion-methyl

Parathion-ethyl

Fenitrothion

 \rightarrow Mechanism of action : acetylcholinesterase inhibitors

- → Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
- From 1960 :

H₃C

- Organophosphorus compounds

- Malathion \rightarrow Forbidden in France since 2008

ightarrow Insecticide and acaricide

 \rightarrow Very toxic for bees

 \rightarrow Application on water areas \rightarrow Decrease of amphibian populations

ightarrow In 1999, in New-York ightarrow Treatments sprayed from airplanes to eradicate West

Nile virus

→ Human toxicity: low but, degradation product, malaoxon: very toxic

Malaoxon

- Parathion \rightarrow Forbidden in Europe and France since 2001
 - \rightarrow ½ life of degradation in soil: 14 days
 - ightarrow « Dirty dozen » : one of the 12 major toxic components worldwide

- → Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
- From 1960 :

- Carbamates (carbaryl, proposan, carbosulfan, propoxur, bendiocarbe, dioxacarbe)
 - \rightarrow Insecticides, fungicides, herbicides
 - \rightarrow Against mosquitoes: propoxur, bendiocarbe, dioxacarbe
 - \rightarrow Long persistence
 - \rightarrow Mechanism of action : acetylcholinesterase inhibitor

Bendiocarbe

ightarrow Compounds withdrawn from the market in France on 2007 because of toxicity

- → Aim: Use of natural origin or synthetic substances having insecticide activity

• Diversity of compounds and ecological impact

- Pyrethroids

Deltamethrin

Cypermethrin

Permethrin

- ightarrow Low toxicity for warm-blooded animals by contact or ingestion
- → Highly toxic for bees and fishes
- \rightarrow Highly biodegradable \rightarrow almost non-existent persistence
- \rightarrow Mechanism of action :

= those of DDT : sodium channel inhibitors

- → Aim: Use of natural origin or synthetic substances having insecticide activity
- Diversity of compounds and ecological impact
 - Benzoyl urea derivatives
 - \rightarrow Insecticide class discovered on 1972
 - \rightarrow Diflubenzuron:

- \rightarrow Mechanism of action: Chitin-synthetase inhibitor
 - \rightarrow Impairment of cuticular structure
 - \rightarrow Insect death during the next moulting

Chemical methods \rightarrow Bio-rationale methods

- Word « bio-rationnel » : appeared on 1974

→ Insecticide approach based on the insect physiological knowledge and respectful of the environment

Chemical methods \rightarrow Bio-rationale methods

- Hormonal approach

- Juvenile hormone (JH)

→ Allows larva growth but inhibits differenciation into adult through maintaining the larval stage

 \rightarrow In adult stage \rightarrow JH regulates reproduction (vitellogenesis, ovogenesis)

- ightarrow JH concentration should be almost nonexistent to get the adult stage
- ightarrow JH: not stable enough to be used as insecticide
 - ightarrow Application of JH-like or juvenoid products
 - \rightarrow Irreversible morphological alterations
 - \rightarrow Insect death

Controlling the vectors Chemical methods → Bio-rationale methods

- Hormonal approach

- Methoprene

- \rightarrow Racemic mixture of R,S-methoprene marketed as Altosid[®] in 1975
- \rightarrow Active principal: S-methoprene

R-methoprene: inert compound

- \rightarrow Not toxic for mammals
- \rightarrow Inactive on insect adult stage
- \rightarrow Mechanism of action
 - \rightarrow Growth regulator
 - \rightarrow JH mimetic

Controlling the vectors Chemical methods → Bio-rationale methods

- Methoprene
- Methoprene use
- \rightarrow Agricultural sector \rightarrow against insect pests of food
- → Against fleas

Fipronil → disrupts the insect central nervous system by blocking the ligand-gated ion channel of GABA A receptor and glutamate-gated chloride (GluCl) channels

OCH₃

Amitraz → behavioral changes in both argasid and ixodid ticks, often manifested as hyperactivity, leg shaking and detaching behavior Behavioral effects → secondary to the actions of amitraz on tick octopaminergic G protein-coupled receptors (GPCR)

 \rightarrow Action against fleas and ticks

Controlling the vectors Chemical methods → Bio-rationale methods

- Hormonal approach

- Methoprene use

ightarrow Control of mosquitoes

- \rightarrow Present formulations only contain S-enantiomer
- → Inhibits adult emergence
- → Genera Anopheles and Aedes are more susceptible to methoprene than Culex
- \rightarrow Application technique: spraying (vaporization)
- \rightarrow Low persistence: 24 h outside
- \rightarrow Need of encapsulation

 \rightarrow ½ life = 4 to 7 days in summer conditions (T°C max and maximum sunshine)

- \rightarrow Methoprene \rightarrow active on populations resistant to usual insecticides
- → Formulation recently released: biodegradable briquets (Altosid®)
 - \rightarrow Allow the management of mosquitoe populations during successive floods

Altosid®

- Xenobiotics metabolization

- Metabolization pathways:
- \rightarrow Metabolic activation
 - \rightarrow Ex.: Parathion (pro-insecticide)
- ightarrow Metabolized in less toxic compounds

 \rightarrow Ex.: Pyrethrinoids

→ Transformation of liposoluble compounds into hydrosoluble derivatives (hydroxylated compounds, glycoconjugates)

ightarrow Acceleration of their excretion in aqueous media

- Enzyme systems involved :

Enzyme systems successively get in place during an intoxication

- Phase I enzymes (functionalization):
- ightarrow Catalyzing oxidation, reduction, and hydrolysis reactions
- \rightarrow Add or unmask electrophilic or nucleophilic chemical groups of the xenobiotics

- Phase II enzymes (conjugation):

→ Fixation of hydrophilic endogous compounds (glutathione, glycuronic acid, glucoside, sulfates or phosphates) on functional chemical groups obtained from phase I

- Resistance to insecticides
- Causes
 - Intensive use of insecticides in agriculture
 - \rightarrow Preventive or curative
 - \rightarrow Massive use
 - \rightarrow Purpose : eradication
 - → Selection of organochlorine-resistant insects (Anopheles, Culex, Aedes)
- Consequences

→ Lower susceptibility to insecticides during disinsecting campaigns to control vector populations

- \rightarrow Necessity to increase the doses (x 10, x 100, x 1000)
- \rightarrow Overcost, toxicity also due to product remanence
- ightarrow Increase of human diseases transmitted by mosquitoes

- Resistance to insecticides
- Insecticide resistance mechanisms
 - Effect on insecticide target
 - Modification of molecular target of insecticides
 - \rightarrow decrease or disappearance of the insecticide-target association
 - Inactivation of the insecticide
 - Alleles of resistance genes involved in:
 - the insect behaviour (insecticide avoidance)
 - one of the pathways involved in target production
 - ightarrow pre-exist in the mosquitoe population
 - \rightarrow or appear through mutation :
 - point mutations
 - chromosomal rearrangements

- Causes of resistance

- The selective pressure
 - → promotes the selection of mosquitoes with these alleles within a genetically heterogeneous population
 - → their proportion increases within the population from one generation to the other
 - \rightarrow Mosquitoes homozygote for the gene of resistance

- Resistance to insecticides
 - Insecticide resistance mechanisms
 - Parameters regulating resistance dissemination within a population
 - Level of dominance / recessivity
 - Selective advantage ?
 - Frequence of mutations
 - Speed of generations
 - Fertility rate
 - Chromosomal or extrachromosomal localization of resistance genes

- Several resistance mechanisms can together appear in one population
 - \rightarrow Rates of insecticide resistance increase
- When a resistance is acquired against one insecticide
 - ightarrow Usually provokes resistance to another one
 - \rightarrow Cross resistance

- Consequences of the chemical product use
- Insecticides have several deleterious effects on the environment:
 - Ecological imbalance :
 - Modification of predator-prey balance
 - Groundwater pollution :
 - Because of their remanence
 - Accumulation in trophic chains
 - Contamination of food \rightarrow human health concern
 - Toxicity for insecticide user

- Developing a reasoned approach
 - Aims of a reasoned control
 - \rightarrow Reducing insecticide quantities
 - ightarrow Reducing food pollution
 - \rightarrow Reducing resistance emergence

- Need for an in-depth knowledge on

- The population dynamics through trapping and breeding
- An appreciation of the damaging level of insects
- Survey of insecticide susceptibility in vectors

- Reasoned control \rightarrow supported by national and European regulations with the aim to reduce the pesticide use by 30 – 50% on the next ten years

- \rightarrow Marketing new insecticides \rightarrow more and more difficult
 - Time for product development : 15 years

- Aim: Reducing vector populations causing damages through the use of living organisms or their products

 \rightarrow Method: generate and maintain an ecological imbalance

- Historical data
 - The oldest known method: 304 before Christ in China: use of ants against a lemon tree beetle (the coleoptera: *Clitea metallica*)

Use of the Australian ladybug *Novius cardinalis*, as predator of the Citrus fruits cochineal, *Icerya purchasi*.

- Identification of natural auxiliary living organisms
- Types of natural auxiliary living organisms
 - Predators : kill their preys to eat them
 - Parasitoids : are dependent on their host and kill them
 - Parasites : are dependent on their host
 - Development of protection means of natural auxiliary living organisms
 - Need of a reasoned chemical control

- Introduction of entomopathogens

Action: they can directly act or through toxins they generate

- Entomopathogenic bacteria

- Identified in *Bombyx mori*.
 - B.t. synthezises and excrete protein crystals \rightarrow toxic for some insects

ightarrow Insecticide effect on lepidoptera, coleoptera, diptera

ightarrow Destruction of midgut cells of the insect larva

ightarrow Death of the insect larvae that can be consumed by the bacteria

- Applications:

- → From 1933
- \rightarrow 1950-1970: Eradication of lepidoptera in forest, fields crops, vineyards
- \rightarrow 1976: Discovery of the « israelensis » Bti serotype

 \rightarrow Larvicidal actions on mosquitoes, blackflies, coleoptera

- Introduction of entomopathogens
- Entomopathogenic bacteria
 - Bt toxins \rightarrow Very sensitive to UV
 - \rightarrow Low remanence on the leaves
 - \rightarrow Higher residual action in soil

ightarrow Biotechnologies: transgenic plants producing Bt toxins

 \rightarrow Issue of toxin degradation in soil...

ightarrow Permitted in organic agriculture

- Toxin molecular weights ightarrow vary as a function of the strains

 \rightarrow Impact on the spectrum of activity:

 \rightarrow Some strains \rightarrow more active against lepidoptera, and/or diptera, coleoptera

Example : B.t. var. *israelensis* \rightarrow mosquitoes

- New strains produced by genetic engineering

ightarrow 14 genes isolated encoding for toxins

- But resistances \rightarrow alteration of the receptor affinity site for the toxin \rightarrow reduction of the toxin binding to intestinal cells

- Bacillus sphaericus : used against Culex quinquefasciatus (urban tropical areas)

- Spores ingested by insect larvae \rightarrow active bacteria \rightarrow lethal toxines

- Introduction of entomopathogens
- Entomopathogenic bacteria

- Conditions required for the insect death after Bti treatment
 - ightarrow Catching and ingesting a Bti crystal
 - \rightarrow Having a highly alkaline digestive tract
 - \rightarrow Having enzymes able to transform protoxins in toxic compounds
 - \rightarrow Having adequate and functional membrane receptors
- Safe for human and pets

- Introduction of entomopathogens
 - Entomopathogenic bacteria
- Marketed formulation: VectoBac®
 - Biological larvicide
 - ightarrow Highly specific against all kinds of mosquitoes
 - \rightarrow Used as dispersible granules
 - \rightarrow Active principle

 \rightarrow Bacillus thuringiensis serotype h14

ightarrow Targets: adult and larvae mosquitoes

 \rightarrow Areas of use: permanently or temporary stagnant water (lakes, ponds, lagoons, wells, swimming pools, septic tanks,)

 \rightarrow Action: quick on larvae

\rightarrow Application:

 \rightarrow Huge surfaces by using agricultural machinary or helicopter/plan

→ Dose: VectoBac[®] dose: 1kg/ha

ightarrow Small surfaces : Application with a pressure sprayer

 \rightarrow Dilution: 10 g de VectoBac[®] WG in 5 liters of water \rightarrow 100 m² breeding site

 \rightarrow Main advantage: no risk for the natural predators present in the breeding site

- Introduction of entomopathogens
 - Entomopathogenic bacteria
 - Marketed formulation: VectoLex®
 - Biological larvicide
 - \rightarrow Biological larvicide containing *Bacillus sphaericus*
 - ightarrow Highly specific against all kinds of mosquitoes, used since 2005
 - \rightarrow Used as corn-based granules
 - \rightarrow Mosquitoe larvae
 - → Ingest bacteria
 - ightarrow Toxins released in the larva midgut
 - \rightarrow Paralysis then death
 - ightarrow Dead larvae at the air-water interface
 - ightarrow Toxins released ightarrow ingested by other larvae
 - \rightarrow VectoLex[®] \rightarrow Larvae control for 6 weeks

Introduction of entomophage fishes

- As soon as 1920, observations in USA and Mexico
 - → Mosquitofish (Gambusia holbrooki and Gambusia affinis)
 - → Species of freshwater fish (*Poecilidae* family)
 - \rightarrow feeds on mosquitoe larvae

→ Small fish:
 Male: 3-4 cm; female 8 cm

- \rightarrow Prefers stagnant water
- ightarrow Accomodates to running water
- \rightarrow Slightly resistant to insecticides

Introduction of entomophagist fishes

Operational use of mosquitofishes

- \rightarrow High capacity of larvae consumption
 - ightarrow One single mosquitofish
 - \rightarrow consumes one hundred larvae or nymphs a day
- → Ability to control their own regulation by eating their youngs when space is reduced
 → Do not overpopulate an area
- \rightarrow Easy breeding and transport:
 - ightarrow Put young fishes in an empty stomach 24 h for transport

Introduction of entomophagist fishes

Operational use of mosquitofishes

Some examples of larvae control

- \rightarrow Algeria: larval control of anopheles is some oases
- ightarrow Iran: 3000 rivers and accumulations of stagnant water
 - \rightarrow 1969: 1.5 million mosquitofishes were released
 - \rightarrow Reduction of malaria in Southern Iran
- \rightarrow Afghanistan: 6 million mosquitoefishes released on 1971

Results

- Positive concerning the control of mosquitoe populations
- Difficult to evaluate the epidemiological effects because concomitant improvement of the antimalarial chemoprophylaxis

Introduction of entomophagist fishes

- The main problem of the tropical larval habitats

→ Seasonal drainage (rice fields, temporary waterways, irrigated grasslands)

 \rightarrow Gambusia affinis: not able to survive in dry areas

- Other larvivorous fishes

→ Nothobranchius guentheri (Tanzania)
 → size: 5-7 cm

→ Cynaolebias bellortii (Argentina, Brazil)

 \rightarrow Can survive with eggs buried in the ground

ightarrow Able to adapt to various habitats and temperatures

ightarrow Studies are currently running in Africa

Introduction of entomophagist fishes

- Limitations to the use of larvivorous fishes

- Prefered areas by Anopheles gambiae, the main vector of Human malaria

- \rightarrow small temporary stagnant water areas
 - \rightarrow not adapted to *Gambusia* fishes
- Larvivorous fishes
 - \rightarrow voracious
 - ightarrow necessary to verify that young fishes are not preys of larvivorous fishes
- ightarrow Just an additional mean to control insect vectors

- Autocidal methods

- Introduction of males having particular characteristics
 - \rightarrow Approach used against several insects (mosquitoes, flies)
 - \rightarrow Breeding of males in a great quantities
 - \rightarrow Sterilized using irradiation
 - \rightarrow Released in the wild (minimum 10³ to 5x10³ /km²)

Example : Sterile males by using gamma irradiation

- → Screwworm (Cochliomya hominivorax) in USA
 - \rightarrow Myiasis \rightarrow cattle/Human (abscess and weakening)
 - \rightarrow Females lay eggs in the wounds of cattle, but <u>they do not hatch</u>
 - \rightarrow Reversing the spread in USA in 1982
 - ightarrow Control program in Mexico, Nicaragua, Costa-Rica, Jamaica

- Control by transgenesis
 - Principle
 - → Use of trangenic males exhibiting specific genetic characteristics leading to:
 - \rightarrow sterility
 - \rightarrow death of progeny
 - ightarrow sex-ratio in favour of males
 - ightarrow annihilated vectorial capacity

- Under investigation

- \rightarrow Transgenic mosquitoes unable to transmit malaria, dengue fever, ...
- ightarrow Sandflies unable to transmit leishmaniases
- \rightarrow Tse-tse flies unable to transmit African trypanosomiasis
- ightarrow Transgenic mollusks unable to transmit schistosomiasis

- Challenges

- ightarrow Need to identify genes involved in vectorial capacity
 - ightarrow Insert mutated genes at the right place into the genome with successful expression
 - ightarrow Get transgenic vectors able to replace natural vectors
 - ightarrow Parasites can adapt to the modified genes?

WHAT IS THE PRICE FOR PEACE OF MIND?

0

