FACULTÉ DE PHARMACIE

Mechanisms of action of antiparasitic drugs

Sébastien POMEL

Université Paris-Saclay, France

International Master TU N° 02, Infectiology 2025

Parasites

Definition:

Eukaryotic organism depending from another organism, the host, during a part of its life or the total lifetime

Diversity:

- Endoparasites
- \rightarrow living inside their host
 - Protozoa → unicellular eukaryotic organisms non producing photosynthesis
 - Metazoa \rightarrow pluricellular organisms \rightarrow Helminths (= worms)
 - Cestodes (segmented flat worms): Tenias
 - Trematodes (non-segmented flat worms): Flukes
 - Nematodes (cylindrical worms): Ex: pinworms

Ectoparasites

- \rightarrow living on the host surface
 - Arthropods
 - Insects
 - Mites

Cosmopolitan diseases more frequent in tropical areas

Diversity of parasites:

Taxonomic position: → Domain Eukaryota:

→ Protozoa (non photosynthetic unicellular Eukaryota)

Plasmodium sp.

Leishmania infantum Trichomonas vaginalis

Trypanosoma brucei gambiense

Entamoeba histolytica

Diversity of parasites:

Taxonomic position: → Domaine Eukaryota:

\rightarrow Helminths (pluricellular Eukaryota \rightarrow vorms)

Fasciola hepatica (fluke)

Schistosoma mansoni

Taenia saginata

Ascaris lumbricoides Enterobius vermicularis

Parasite genus

Antiparasitic drugs

Definition

Synthetic or natural compound

- \rightarrow active against one or several parasite stages \rightarrow biocide or biostatic actitivities
- \rightarrow well tolerated by the host \rightarrow requires selective activity and low toxicity

Setting up a treatment

- After diagnosis on the +/- symptomatic host: what kind of parasite ?
 - \rightarrow Requires a precise identification of the parasite species
- Then, choosing the treatment targeting the diagnosed parasite

Conditions for the efficacy of an antiparasitic treatment :

- Patient compliance (duration, dosage)
 - \rightarrow Getting the healing
 - \rightarrow Preventing drug resistance emergence
- Avoiding personal and social behaviours favouring new contamination
 → Following sanitary recommendations

Antiprotozoal drugs

 \rightarrow should concentrate where the parasite dwells to prevent toxicity

Main biological targets of antiprotozoal drugs

- Inhibition of heme biomineralisation
 → Toxicity for the parasite
- Inhibition of oxidative phosphorylation
 → Impairment of parasite respiration
- Inhibition of trypanothione-reductase
 → Impairment of detoxification
- Inhibition of polyamine metabolism
 → Impairment in cell functions
- Damages to membranes
 - \rightarrow Loss of membrane integrity
 - \rightarrow Impairment in the biosynthesis of membrane lipids
- Inhibition of DNA biosynthesis
 - \rightarrow Impairment of parasite reproduction

Antimalarial drugs Life cycle of *Plasmodium sp.* → Malaria

Antimalarial drugs

\rightarrow The main sites of action of antimalarial drugs

Main mechanism of action of quinolines

ightarrow Inhibitors of heme biomineralisation

 \rightarrow Formation and accumulation of a cytotoxic complex with protoporphyrin IX produced from the hemoglobin degradation within the digestive vacuole, normally transformed into hemozoin

(= non toxic malaria pigment)

	Antiparasitic drugs	Mechanism of action
Mechanisme of action of antimalarial drugs Drug combination Atovaquone + Proguanil	<section-header><section-header><text></text></section-header></section-header>	<list-item><list-item><list-item></list-item></list-item></list-item>
	Biguanide - Proguanil $H H H CH_3$	 → Active form: cycloguanil (metabolite → Inhibitor of DHFR (DiHydroFolate Reductase)

Mechanism of action of antimalarial drugs:

Artemisinin derivatives

Sesquiterpene lactones

Antiparasitic drugs

- → Opening the endoperoxide bridge
- \rightarrow Production of free radicals
- \rightarrow Oxidative activity

Mechanism of action

→ Cell functional impairments

→ Damages on nuclear, endoplasmic reticulum and mitochondrial membranes

 \rightarrow Ribosome aggregation

→ Reduction of protein biosynthesis

Mechanism of action of antimalarial drugs:

Artemisinin derivatives

ACT: Artemisinin Combination Therapy

Combined with:

Piperaquine

Antiparasitic drugs

Sesquiterpene lactones

- Artesunate (severe malaria)

Mechanism of action

- \rightarrow Opening the endoperoxide bridge
- \rightarrow Production of free radicals
- \rightarrow Oxidative activity
- → Cell functional impairments

→ Damages on nuclear, endoplasmic reticulum and mitochondrial membranes

- → Ribosome aggregation
- ightarrow Reduction of protein biosynthesis

History of antimalarial chemotherapy

Adapteed from Pradines, 2010

History of drug resistance emergence

Life cycle of *Entamoeba histolytica* \rightarrow Amoebiasis

10

A 86

Mechanism of action of nitro-5-imidazoles

Interaction with pyruvate-ferredoxine oxydo-reductase (PFOR) = specific pathway in anaerobic bacteria and some protozoa (equivalent to pyruvate dehydrogenase of aerobic organisms)

- ightarrow Neutralization of radicals in host cell by oxygen that is toxic for the parasite
- \rightarrow SOD absent from the parasite (anaerobic)

Nitro-5-imidazoles

Comparative pharmacokinetics:

	Metronidazole	Ornidazole	Tinidazole	Secnidazole
Bioavailability	100% (not reduced by meals)			
Distribution	Excellent distribution within all tissues and biological liquids			
Biotransformation	Hepatic \rightarrow Cyt P3A4 \rightarrow Oxidized metabolites			
Plasmatic peak	1-3h	2-4h	2h	2-3h
Half-life	8-10h	12-14h	12-14h	25h
Elimination	Urinary (70%) and fecal	Urinary	Urinary and fecal	Urinary (slow)
Trade name	Flagyl®	Tiberal®	Fasigyne®	Secnol®

Spectrum of activity of nitro-5-imidazoles

Some protozoa

 \rightarrow Entamoeba histolytica

Spectrum of activity of nitro-5-imidazoles

Mechanism of action of antiamoebic drugs:

Antiamoebic drugs having intraluminal action only

Aminoside (or aminoglycoside)

Antiparasitic drugs

- Paromomycin (Humatin[®])

Dichloracetamide

 Diloxanide (Entamide[®], Furamide[®])) (not in France)
 CI
 <

Mechanism of action

- → Poorly absorbed by oral route
 → Intraluminal action
- → Binding to rRNA 16S
 → Accumulation of aberrant proteins
 - → Inhibition of protein biosynthesis

→ Disrupting ribosomes ?

Mechanism of action of antileishmanial drugs: Antimony derivatives

Intiparasitic drugs

Mechanism of drug resistance

entavalent antimonials

Meglumine antimoniate (Glucantime[®])

Sodium stibogluconate (Pentostam[®])

	Antiparasitic drugs	Mechanism of action
Mechanism of action of antileishmanial drugs	Polyene macrolide - Amphotericin B (Fungizone [®] , now used under the liposomal form: AmBisome [®]) $ \int_{HO}^{+} \int_{OH}^{+} \int_{OH}^{+} \int_{OH}^{+} \int_{HO}^{+} \int_{HO$	 → Formation of pores → K+ leakage → Decrease membrane fluidity → Stimulation of INF-γ production by macrophages → Biosynthesis of TNFα and IL1 → Production of nitric oxide (NO) → Increase of oxidative burst → Apoptosis
	Alkylphospholipide - Miltefosine (Impairment of the membrane lipid biosynthesis Inhibition of cytochrome c oxidase Apoptosis
	Aromatic diamidine - Pentamidine HN + V + V + V + V + V + V + V + V + V +	 Inhibition of DNA biosynthesis (rich in AT bases in these parasites) = inhibition of thymidine synthetase Fixation to tRNA Impairment of the mitochondrial activity

Life cycle of *Trypanosoma brucei* \rightarrow Human African Trypanosomiasis

- ightarrow 2 phases of the disease: haemolymphatic and meningoencephalitic
- ightarrow 2 Trypanosoma species:
 - \rightarrow *T. brucei gambiense* (West Africa)
 - → *T. brucei rhodesiense* (East and South Africa)

	Antiparasitic drugs	Mechanism of action
Mechanism of action of trypanocidal drugs	Naphtalene derivative - Suramine (Moranyl [®] , Germanin [®]) $ = \int_{\downarrow \\ \downarrow \\$	 Active on the haemolymphatic phase of <i>T. b. rhodesiense</i> Inactive on the late phase (meningo-encephalitis)
NECT: Nifurtimox- Eflornithine Combination Therapy → Active on the meningo-encephalitis phase provoked by <i>T. b. gambiense</i> (West Africa)	 Nitro-5-imidazole Fexinidazole Solution (Note: Note: Note	 Sulfoxide and sulfone metabolites Active on hemolymphatic and meningoencephalitic stages (<i>T. b. gambiense</i>)
	- Eflornithine (Ornidyl [®]) $H_2N \xrightarrow{CHF_2} H_2N \xrightarrow{H_2N} OH$	 Competitive and suicide inhibitor of ornithine decarboxylase (ODC) High affinity for parasitic ODC ODC turn-over → slower in parasite than in host
	Nitrofurane - Nifurtimox H_{μ} , CH_3 O_{NO_2}	 Formation of an anionic metabolite reacting with DNA Reduction of nifurtimox → ROS

Anthelminthic drugs

 \rightarrow should concentrate where the parasite dwells to prevent toxicity

Main biological targets of anthelminthic drugs

- Cuticle and/or plasma membrane
- Tubulin polymerization and microtubule biosynthesis
- Carbohydrate absorption and metabolism
- Protein biosynthesis
- Nucleic acid biosynthesis
- Nervous system: neurotoxicity
 - Action on cholinergic synapses (cholinomimetic)
 - Action on GABAergic synapses
 - Action on adrenergic receptors
 - Action on nerve impulse transmission

Mechanism of action of benzimidazoles

Fixation of benzimidazoles to β -tubulin dimers \rightarrow Inhibition of microtubule polymerisation

- \rightarrow Mitosis inhibition and impairment of cell activity
- → Inhibition of absorption of nutrients (glucose, etc...)
- \rightarrow Decrease of glycogen stock
- → Impairment of energetic metabolism (reduction of ATP production)
- ightarrow Paralysis leading to parasite death ightarrow expulsion

Caracteristics	Flubendazole	Albendazole	Triclabendazole
Bioavailability	Low intestinal absorption (5-10%)	Low intestinal absorption (5-10%)	Increases with fat- laden meal → Absorption > 80%
Biotransformation		Hepatic	Hepatic
Active compound outside digestive tract		Albendazole sulfoxyde	Triclabendazole sulfoxyde
Elimination half-life		8h30	11h
Elimination route	Feces (during 3 days)	Biliary (90%) → Feces	Biliary (90%) → Feces
Trade name	Fluvermal [®]	Zentel [®] Eskazole [®]	Egaten®

Spectrum of benzimidazoles activity in medicine

- \rightarrow Extended to Cestodes (+/- Trematodes)
- → Adulticidal and/or larvicidal

Flubendazole

 \rightarrow Intestinal nematode infections except strongyloidiasis (= anguillulosis)

Albendazole

 \rightarrow Intestinal nematode infections: ascaridiosis, ancylostomiasis, pinworm infection, whipworm infection (*T. trichiura*), anguillulosis and trichinellosis

→ Larval cestode infections such as echinococcosis (*Echinococcus granulosus* and *E. multilocularis*), cysticercosis (*Taenia solium*)

 \rightarrow High dose and long duration treatment

→ Protozoan diseases: giardiasis and microsporidiosis (*Enterocytozoon bieneusi*)

Triclabendazole

 \rightarrow Distomatosis due to Fasciola hepatica

Avermectins

- \rightarrow Chemical family: macrocyclic lactone
- \rightarrow Isolated from *Streptomyces avermitilis* fermentation

 \rightarrow lyermectin

Semi-synthetic mixture of two isomers

- \rightarrow Nobel Prize in Medicine and Physiology on 2015:
 - \rightarrow William Campbell (Irlande) and Satoshi Omura (Japan)

 \rightarrow for their discovery of ivermectin, whose the derivatives have significantly reduced the prevalence of river blindness and those of lymphatic filariasis

The same year, the Chinese researcher, Youyou Tu, shared this Nobel Prize for her treatment of malaria with artemisinin

Mechanism of action of ivermectin

- → Parasite paralysis as the consequence of neurotransmission inhibition (GABA-mimetic effect)
 - → Fixation with high affinity on calcium channels chloride-glutamate dependent of invertebrate nervous and muscular cells
 - → Depolarization blockage through intake flux of Cl
 - \rightarrow Hyperpolarization of nervous and muscular cells
 - ightarrow Neuromuscular paralysis of nematodes ightarrow Parasite death

Ivermectin characteristics

Characteristics	Data
Bioavailability	Administration on an empty stomach with 2 h-fasting before and after treament Good tissue distribution, even within the eye Low diffusion in cerebrospinal fluid
Plasma peak and half-life	4h/12h No brain barrier crossing
Biotransformation	Hepatic (Cyt P450)
Elimination	Feces (<1% eliminated in urine)
Secondary effects	Reaction to microfilariae lysis: prurit, skin rash, œdema
Trade name	Stromectol [®] Mectizan [®] (OMS)

Spectrum of ivermectin activity

Onchocerciasis = River blindness (Onchocerca volvulus)

Mectizan®

→ Larvicidal on *Onchocerca volvulus* microfilariae living in sub-cutaneous tissue

→ No adulticidal activity
 → Progressive paralysis
 Intense infammatory reactions occuring when parasites suddenly die

Adult worms can continue producing microfilariae

→ Ivermectin treament should be given once a year for as long as there is evidence of continued infection in order to stop transmission

Spectrum of ivermectin activity

Bancroftian filariasis (*Wuchereria bancrofti*) (Mectizan[®])

Ectoparasitic disease

- → Sarcoptic mange (Sarcoptes scabiei)
 - \rightarrow Provoked by a mite (and not an helminth)
 - \rightarrow If high parasite burden
 - \rightarrow 2nd treatment dose and/or association
 - with a topical treatment
 - \rightarrow necessary within the 8 to 15 days in order to get healing

Anguillulosis = strongyloidosis (Stromectol[®])

Pyrazino-isoquinoline

Praziquantel

Mechanism of action

Praziquantel antagonizes voltage-gated calcium channels

 \rightarrow Increase of tegument/muscles membrane permeability to Ca²⁺

- \rightarrow Muscle tetany and paralysis
- \rightarrow Vacuolization of teguments
- \rightarrow Greater impact on adult worms than on immature forms

ADME characteristics of praziquantel

Characteristics	Data
Bioavailability	Good digestive absorption
Plasma peak	0.8 to 1.5 h (4 to 5 h for metabolites)
Biotransformation	Hepatic (Cyt P450) → hydroxylated metabolites with first pass effect → Inter-individual variations of plasma concentrations
Elimination	Renal for 80% praziquantel (>70% of the dose under metabolite forms within 24h)
Trade name	Biltricide®

Action against all the parasite stages (adults and larvae):

Trematode diseases

- → Schistosomiases provoked by Schistosoma haematobium, S. mansoni, S. intercalatum,
- S. japonicum

→ Distomatoses provoked by Clonorchis sinensis, Opistorchis viverrini, Paragonimus westermani

Cestode diseases

- \rightarrow Hydatid cyst provoked by the tapeworm: *Echinococcus granulosus*
- \rightarrow Alveolar echinococcosis provoked by the tapeworm *Echinococcus multilocularis*
- ightarrow Cysticercosis provoked by Taenia solium
- ightarrow Diphyllobothriasis caused by Diphyllobothrium latum

No action against nematodes

→ Schistosomiases caused by Schistosoma haematobium, S. mansoni, S. intercalatum, S. japonicum

→ Distomes Clonorchis sinensis, Opistorchis viverrini,

Paragonimus westermani

→ Cysticercosis (Taenia solium)

→ Diphyllobothriasis

(Diphyllobothrium latum)

Conclusion

- \rightarrow Few human vaccines against parasites
- \rightarrow Antiparasite chemotherapy
 - → Necessary despite
 - \rightarrow Problems of toxicity
 - → Problems of drug resistance
 - \rightarrow Protozoa \rightarrow ++ \rightarrow Helminths \rightarrow +/-

- \rightarrow Need of:
 - \rightarrow Identification of new therapeutic targets
 - \rightarrow New drugs
 - → Drug targeting approaches
 - \rightarrow Reducing toxicity
 - → Drug combination
 - \rightarrow Reducing toxicity
 - \rightarrow Reducing drug resistance

