

Environmental risks from existing and emerging parasites

Sébastien POMEL

Université Paris-Saclay, France

International Master TU N°02, Infectiology 2025

Impact of infectious diseases on the biodiversity

- Emergence and re-emergence of infectious diseases
 - Mathematical models
 - Measuring the impact of infectious diseases on the populations

 \rightarrow On humans and wildlife

 \rightarrow Effect of infectious diseases on the biodiversity evolution ?

- During these 500 last years
 - Disappearance of 833 animal species
 - Infectious diseases involved in 3.7% extinctions of species
- Right now
 - Out of 2852 living endangered species (fauna and flora) →
 8% threathened by infectious diseases

Examples of human parasitic diseases transmitted by vectors

• Parasitoses

Parasite: Protist

 Malaria:
 France:

 6,000 annual imported cases

Plasmodium sp.

Leishmaniases:France:

- Dog: ++++
- Human: +

Leishmania sp.

Responsible for the parasite transmission: Arthropod

← Anopheles sp mosquito

← Sandfly

Definition of « invasive species »

- Invasive species = exogenous intrusive species
- Exotic species
 - \rightarrow Develops in autochtonous ecosystems
 - ightarrow Causes disturbances of the biodiversity

 \rightarrow Example: processionary caterpillar of pine or oak

 \rightarrow Urticating hair thrown in the air during the 3rd larval stage

→ Humans: Allergy, itch, oedema, ocular lesions, respiratory disorder

→ Pets → vulnerable Dogs/cats → tongue necrosis after licking the itch

Origin of invasive species

- Appearance of species

→ Consequence of adaptation of living organisms to new environments

- Indigenous or autochtonous species (micro-organisms, plants, animals)

ightarrow Species that have evolved within a given habitat for a long period

- Co-evolution

ightarrow Long common development story

- Climate changes and invasive species
 - ightarrow Natural limits of species distribution have followed the climate changes

 \rightarrow Invasive species: generally more tolerant than indigenous species in regard to their environment \rightarrow adaptation advantage

- Spreading of invasive species

ightarrow Facilitated by exchanges and transports

Spreading of invasive species

- Intentional introduction of living species
 - \rightarrow New pets
 - ightarrow Plants for food, medicinal or esthetic reasons
- Unintentional introduction of living species
 - \rightarrow Transport of merchandises

- Species survival during transport
 - \rightarrow As a function of the transport time
 - \rightarrow Modern transports
 - ightarrow Air conditioning
 - \rightarrow Chances of organism survival \rightarrow Enhanced
 - \rightarrow Transportation areas \rightarrow Penetration of non-indigenous species
 - \rightarrow Tropical and temperate zones \rightarrow Directly in contact

Invasion biology→ A new science

- Danger of introducing non-indigenous species in a new habitat
 - → Approach considered by Charles Elton on 1958 (British ecologist)
 - → A new scientific discipline: invasion biology
 - ightarrow Evaluating the ecological effects of new species on indigenous biodiversity
 - \rightarrow Proposing means to control these adverse effects
- Scientific research studying
 - \rightarrow Means of dissemination of non-indigenous species
 - \rightarrow Conditions favouring their spreading
 - ightarrow Modifications provoked in the ecosystems
 - \rightarrow Influence on species (autochtonous and non-autochtonous) within an habitat
 - ightarrow Development of means for early detection
 - \rightarrow Monitoring the threat of these species to control their invasion

- Various living organisms: plants (ornamental plants/trees, fruit trees, cultivated plants, medicinal plants, lactating / meat producing / draft animals, pets,...)

- \rightarrow Some examples
- Cultural history of humanity
 - \rightarrow Involves pets
 - Eurasia

 \rightarrow Domestication of goat, sheep, rabbits and dog

ightarrow have accompagnied humankind since 10 000 - 16 000 years

 \rightarrow Horse, muskox, pigs

→ 6 000 - 9 000 years

 \rightarrow Breeding of these animals \rightarrow extensive = cattle free in huge areas without fences

 \rightarrow Sometimes, some animals escape and constitute wild populations

- In several centuries

 \rightarrow European navy \rightarrow colonization of islands by domestic animals

- Wild goats (Capra hirta)
 - \rightarrow Can eat a wide range of plants (stems, roots, bark)
 - \rightarrow Climb up trees
 - \rightarrow Disappearance of many indigenous plant species

- Australia

 \rightarrow Proliferation of rabbits

ightarrow In 1859, Thomas Austin, British hunter, imported from UK 12 couples of rabbits in Southern Australia

 \rightarrow 50 years later \rightarrow 600 millions rabbits have colonized 60% of the territory (no natural predator in Australia)

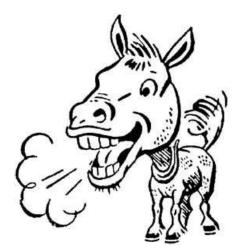
- Australian rabbits \rightarrow participate to the desertification through the removal of vegetation \rightarrow Serious ecological and agricultural crisis

- Implemented means: hunting, explosive, traps, ... \rightarrow Failure
- Introduction of fox as predator
 - \rightarrow Catastrophic effects
 - \rightarrow Fox \rightarrow More affinity for marsupials yet threatened by rabbits
 - \rightarrow In the 1950s \rightarrow introduction of the lethal myxomatosis
 - \rightarrow Specially designed to affect wild rabbits

→ Efficient during the first years of use with 80% reduction of the rabbit population

→ Transmitted by mosquitoes, ticks, fleas → poorly adapted in Australia comprising a huge desert

- \rightarrow Rabbits became virus-resistant
- \rightarrow Some years later \rightarrow Virus effect \rightarrow non existent


- Introduction of a Spanish flea \rightarrow more adapted to arid environment
- \rightarrow Failure
- Introduction of new and more infectious strains after myxomatosis virus
 - \rightarrow But not stable
 - \rightarrow Risk of mutations
 - \rightarrow Risks for humans and other animals ???


- In 1995 \rightarrow Introduction of the hemorrhagic fever virus
 - → Death of rabbits in 24 to 48 h par asphyxiation and cardiac arrest → But, in wet areas → Competition with another virus which annihilates its virulence
- At present \rightarrow investigation on new viruses \rightarrow acting on reproduction
- Presently = 200 million rabbits in Australia

- \rightarrow Proliferation of donkeys
 - ightarrow Donkey coming back to the wild life
 - ightarrow 1.5 million wild donkeys
 - \rightarrow Destruction of vegetation
 - \rightarrow Danger for indigenous herbivores

\rightarrow Proliferation of wild dromedaries

- ightarrow Introduced in Asia in the 19th century as draft animals
- \rightarrow Some of them escaped, other were released
 - \rightarrow More than one million dromedaries currently
 - \rightarrow Annihilate the protection measures for vegetation in this arid continent
 - ightarrow Danger for plants and animals

Yellow-legged hornet (*Vespa velutina nigrithorax*)

→ Hymenoptera
 → Family Vespidae

Geographical origin

- → Continental Asia: Northern India, Chinese mountains and Indonesia
 - \rightarrow Areas with similar climate as in Southern Europe

Diagnostics:

European hornet: Vespa crabro, yellow, black

Asiatic hornet: dark with orange bands

The founding queen

- \rightarrow Size: up to 3.5 cm
- \rightarrow Lifetime: one year

- → Establishes its own colony in spring from March to early August
 → Larvae, workers
 - \rightarrow Late summer: males and sexual females (future queens)
 - \rightarrow Wintering and foundation of new colonies

Hornet's nest

- \rightarrow Cellulosic fibrous
- \rightarrow Spherical

- Asiatic hornets

→ Large nests (> 40 cm diameter, sometimes 80 cm) mainly in trees But → hornets → opportunistic → Nests in chimneys, ground, ...

- European hornets

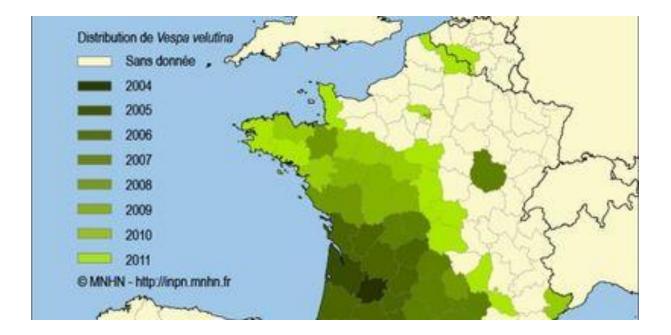
 \rightarrow Nests in tree hollows or ground

Each nest

ightarrow 2000 hornets including 150 founding queens

Hornet bite

- Not more dangerous than those of European hornet but more painful



Appearance in France before 2004

- ightarrow Arrived in pieces of pottery imported from China
- \rightarrow Acclimatization: in 2006 \rightarrow presence in 6 South Western departments
- \rightarrow Continuous expansion: in 2011 \rightarrow 50 French departments colonized

Environmental incidences

In Kashmir and China \rightarrow Considered as an enemy of the Asiatic bees: Apis cerana

Strategy of hornet worker

ightarrow Decimate hives: feed on the bee larvae

Defence strategy of Apis cerana

ightarrow Hornet quickly surrounded by a mass of bees

 \rightarrow Vibration of bee wings

- \rightarrow Increase of the T°C in the mass of bees
- \rightarrow Death of the hornet

Apis mellifera \rightarrow Similar defence technics but less efficient since recently

Repeated attacks of the hives

ightarrow Weakening of the colonies

Diet

 \rightarrow 30% bees

ightarrow Co-responsible for the reduction of the bee number in France

- \rightarrow 30% wasps
- \rightarrow 30% flies

attacks the weakest preys

 \rightarrow Predator modifying ecosystems by eliminating weak species

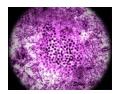
Hornet incidence on environment

- Possible advantage \rightarrow Eliminating the weakest preys
- Drawback \rightarrow Growing threat for bees

 Dissemination of mosquito by airline traffic
 Ex.: Monitoring alive mosquitoes in London airports
 → 12 planes out of 67 were positive (despite insecticide use)

Anopheles and Aedes \rightarrow the most dangerous mosquitoes

Anopheles \rightarrow vector of malaria (5 000 cases of importation in France every year + some cases in airport areas)


Malaria \rightarrow provoked by the protozoan parasite *Plasmodium*

 \rightarrow Lethal cases of cerebral malaria with infections caused by *P. falciparum*

Aedes \rightarrow viruses vector

Ex.: West Nile virus \rightarrow introduced in USA from Israel by an airliner

- → Asymptomatic infection/febrile syndrome/meningoencephalitis
- \rightarrow Vertical transmission in other female mosquitoes (*Culex*)
 - ightarrow observed in laboratory

Aedes \rightarrow virus vector

Ex.: Dengue virus (Flavivirus)

- \rightarrow 4 different serotypes (DENV-1 to DENV-4)
- ightarrow One of the most prevalent viruses worlwide
- ightarrow 100 million fever cases
 - \rightarrow 500 000 hemorragic fevers
 - ightarrow 25 000 deaths a year
- ightarrow Present in Asia and Southern America ightarrow Humid forests and areas
- \rightarrow Two forms : mild form / haemorrhagic form
- \rightarrow No vaccine yet available
- \rightarrow Vertical virus transmission by female mosquitoes to their descendants

Dissemination of Aedes albopictus

- = tiger mosquitoe
- \rightarrow Insect of the *Culicidae* family
- ightarrow Native from South East Asia
- ightarrow One of 10 species the most invasives worldwide
- ightarrow Present in 80 countries on the 5 continents
 - \rightarrow In France (since 2007)

- \rightarrow Vector of dengue virus
- \rightarrow Vector of Chikungunya virus

First autochtonous cases of Chikungunya and dengue fevers observed in South East France in 2010

Tiger-mosquitoe

 \rightarrow Dark and white stripes on the body and legs

Biological cycle

ightarrow Development ightarrow mainly in urban area

→ Egg-laying by females in stagnant water (anthropic breeding sites: saucers under flower pots, old tires, poorly drained gutters, pools of water after the rain...)

- \rightarrow T°C between 25 and 30°C: laying of 74 eggs/female every 3-4 days
- ightarrow Half of the female mosquitoes live about one month at 25°C

Behaviour

 \rightarrow Aggressive behaviour \rightarrow bites during daytime with aggressivity peak during dawn and dusk

 \rightarrow Infection of mammals and birds through the saliva containing pathogens

Aedes albopictus dissemination

Main reasons :

- ightarrow Transport of old tires containing larvae in water
- \rightarrow Climate warming
 - ightarrow Dissemination in temperate areas and higher in altitude
 - \rightarrow Permanently installed in France since 2006-2007

Vectorial capacity

 Only female mosquitoes are hematophagous and anautogenous

(= have to feed on mammal blood for egg maturation)

Mosquitoes

Chikungunya virus transmission

RNA arbovirus with 2 genotypes

- \rightarrow Occidental Africa
- ightarrow Southern and East Africa
- ightarrow Epidemy in La Réunion island in 2005-2006
 - \rightarrow 40% of the population affected
 - ightarrow Variant of classical virus named CHIKV

- In the 2000's: mutation in a single amino acid of a gene encoding for a viral envelope protein

- \rightarrow Modification of the infectious properties of the mosquitoe vector:
 - \rightarrow Better infection of *A. albopictus*
- ightarrow Higher dissemination of the disease
 - \rightarrow More efficient spreading than with its original vector, A. aegypti

Mosquitoes

Chikungunya virus transmission

- \rightarrow Virus multiplication in the mosquito digestive tract
 - \rightarrow Virus migration in salivary glands
 - \rightarrow Infectious female mosquitoes
 - \rightarrow remain infectious for the rest of their life (about 1 month)
 - ightarrow bites and lays every 4 days
 - → 1 mosquito: 7 to 8 transmissions are therefore possible with contaminations of 7 to 8 persons

ightarrow Insect control in breeding sites and elimination of stagnant water

→ Insecticide sprays, insecticide-treated bednet
 → No vaccine

Leishmaniases

Infectious diseases caused by Euglenozoa parasites from the genus *Leishmania sp.*

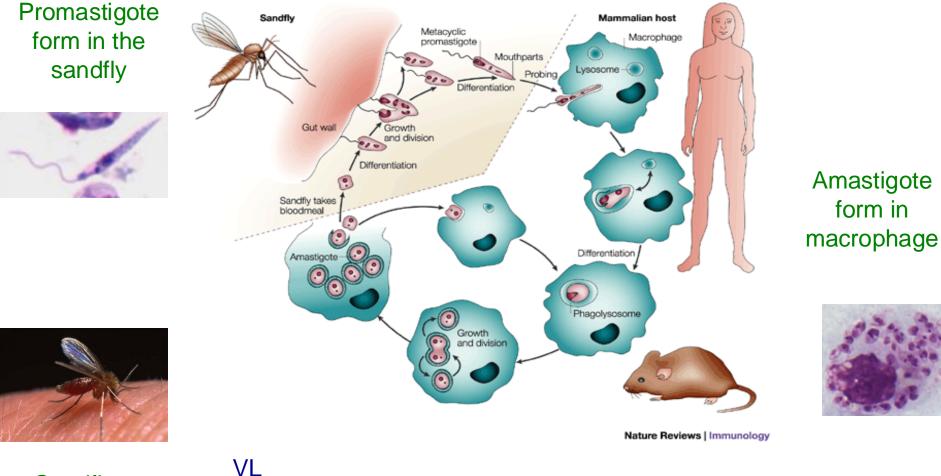
Human leishmaniases

CUTANEOUS / MUCOCUTANEOUS FORMS

VISCERAL FORM

Localized cutaneous

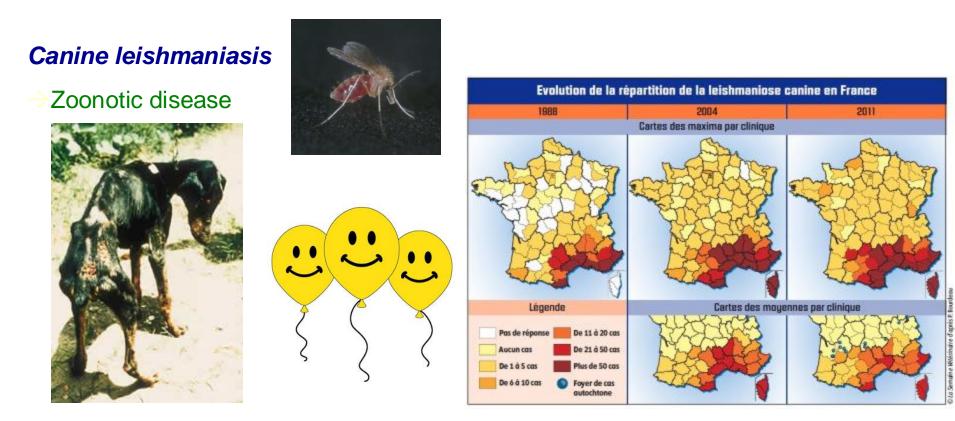
Diffuse cutaneous


Muco-cutaneous

- 350 million people at risk worldwide (Africa, South America, Asia, Southern Europe)

-- 12 million cases worldwide and 2 million new cases per year (500 000 new cases of VL in India, Bangladesh, Nepal, East Africa)

Life cycle of Leishmania sp.



Sandfly

Leishmania donovani \rightarrow Anthroponotic disease *Leishmania infantum* \rightarrow Zoonotic disease

Leishmaniases

- -- L. infantum \rightarrow responsible for canine leishmaniasis in the Mediterranean basin
- -- Dog \rightarrow Leishmania reservoir for humans
- -- Annually, the number of new cases of canine leishmaniasis is estimated at 10 000 in France

Controlling the insect vector

The sandfly

Phylum:	Arthropoda
Class:	Insecta
Order:	Diptera

•Family:

Bites

Breeding

Feeding

Life Span

Distribution

- Psycodidae

Leishmania infection rate. Both cutaneous and visceral leishmaniases (CL & VL) are endemic to Tallil area and the local Ministry of Health office in nearby Nasiriyah reported an on-going outbreak of the more dangerous VL. With ambient 100-130° temperatures our Forces worked and slept in tents without A/C. Vector control efforts with residual and ULV sprays, rodent control and habitat

C I IFI CALLE

→ Found in warm countries	actions, all failed to quickly reduce sand fly	
\rightarrow Only female sandflies can bite: in the home at night		
During the day \rightarrow stay in holes and cracks of walls and dark areas		
\rightarrow The eggs are laid in humid and dark places in cattle and poultry sheds		
Most species are nocturnal		

- Dispersal \rightarrow The range of flight distance is about 200 meters from their breeding places
 - \rightarrow Average life of sandflies is about 2 weeks

Controlling the insect vector

The sandfly

Control measures

→ Necessity of sandfly surveys

Sandflies are easily controlled because they do not move long distance from their breeding places

Light trap \rightarrow with collecting bag \rightarrow efficient

Drawback: soil development of the larvae (≠ mosquitoes)

Insecticides

- → Permethrin / fipronil (Frontline Tri-Act®): pipettes 100% efficiency after topical treatment 1 / month
- → Afoxolaner (NexGard®): tablets 64% efficiency after oral treatment 1 / month
- → Deltamethrin (Scalibor®): collars
 90% efficiency for 1 year
 Directly delivered onto the dog's skin
 - \rightarrow spreading through the skin lipid layer

e sand fly, Phlebotomus papatasi. Photo: Frank Collins, CDC.

CDC miniature light trap with collecting bag. Photo: SSG Walker, USAPH

Controlling the insect vector

The sandfly

Sanitation

- \rightarrow Remove vegetations and fill holes and cracks in the walls and floor
- \rightarrow Distance of cattle and poultry sheds from human home

Global changes and consequences for leishmaniasis spreading

Climate change

- \rightarrow Temperature, rainfall distribution
 - \rightarrow Changes in
 - seasonality / persistance of vector distribution
 - human migratory flux

Globalization

- \rightarrow Trade, economic and political impacts
 - \rightarrow Changes in human migratory flux

Human pressure

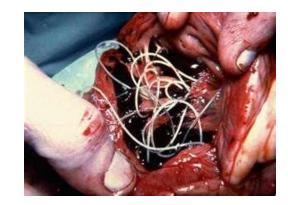
- \rightarrow Deforestation, urbanization, water management
 - → Increase of human contact with vectors and parasites

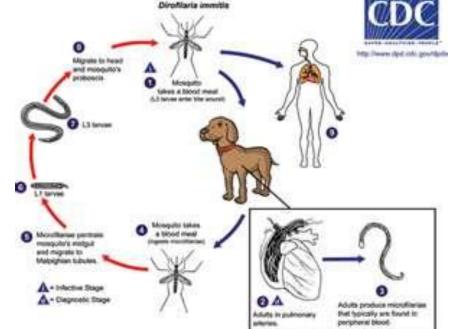
Ticks

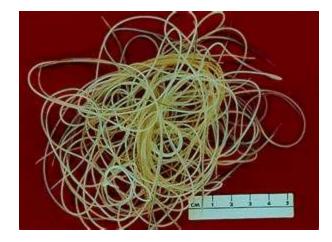
Tick dissemination through dog transports

 \rightarrow Illegally imported from distant countries to Europe

- \rightarrow Absence of veterinary control
- Dog ticks:
- \rightarrow Rhipicephalus sanguineus
 - \rightarrow African origin
 - ightarrow Disseminated in Mediterranean areas
 - \rightarrow Dissemination in Europe
 - \rightarrow Responsible for canine hepatozoonosis
 - → Hepatozoon canis and Hepatozoon americanum (Protista:
 - Apicomplexa) \rightarrow incurable disease
 - \rightarrow Loss of appetite, anemia, loss of weight, digestive disorders, muscle rigidity
 - \rightarrow 2 forms of the disease:
 - \rightarrow Chronic (successive remission phases and relapses)
 - \rightarrow Acute (fatal outcome in several weeks)




Rhipicephalus sanguineus


Worms

Spreading of the worm *Dirofilaria immitis* through dog transports

- Canine heartworm:
- → Dirofilaria immitis (Nematode)
 - \rightarrow American origin
 - \rightarrow Dissemination in Europe
 - ightarrow Responsible for the canine dirofilariasis
 - \rightarrow transmitted by mosquitoes
 - \rightarrow canine heart failure

Worms

Dirofilaria immitis \rightarrow Cardiopulmonary heartworm disease (dirofilariasis) Dirofilaria repens \rightarrow Subcutaneous dirofilariasis

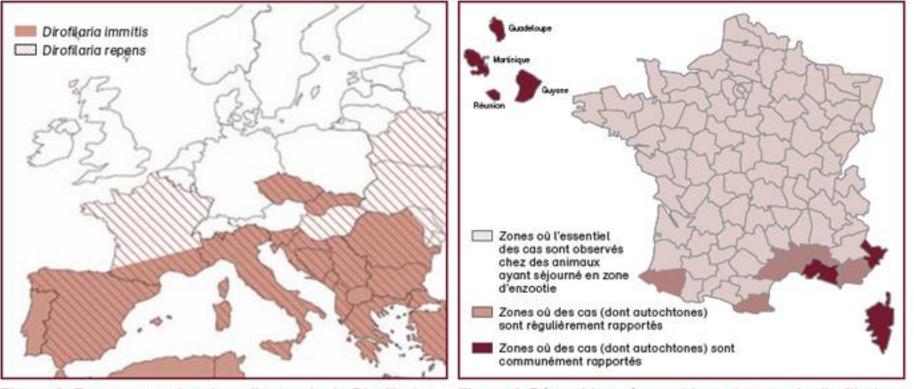
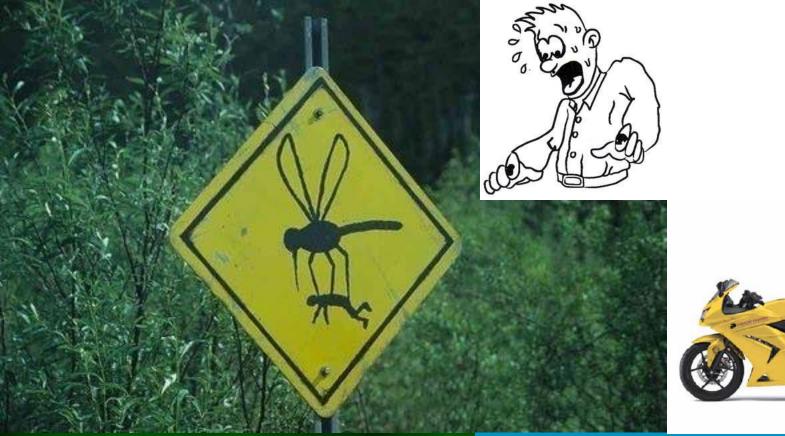



Figure 3. Zones approximatives d'enzootie de Dirofilaria immitis et Dirofilaria repens en Europe.

Figure 4. Répartition géographique des cas de dirofilariose cardio-pulmonaire des carnivores en France (d'après Bourdeau et al. 2008).

WHAT IS THE PRICE FOR PEACE OF MIND?

