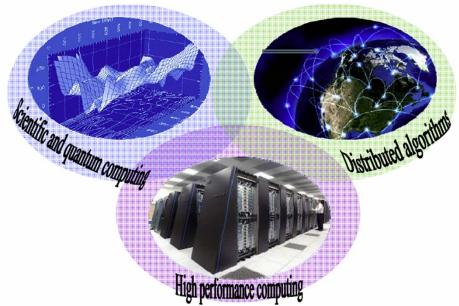


Quantum and Distributed Computer Science (QDCS) Master's Program

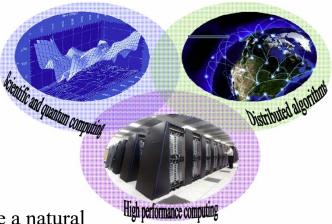
Master Informatique Faculté des Sciences d'Orsay Université Paris-Saclay


Janna BURMAN and Oguz KAYA

QDCS Master

will enable you to acquire deep knowledge in three major interconnected areas:

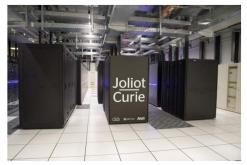
- Distributed algorithms and systems
- High performance and parallel computing
- Quantum computing



QDCS Master

QDCS master's program focuses on the performance, robustness and optimization of **distributed**, **parallel** and **quantum** systems

Using advanced methods, algorithms, models, analysis and programing of parallel, distributed and quantum computing


Quantum computing is a new compute paradigm and provide a natural extension to current parallel and distributed computing and systems by

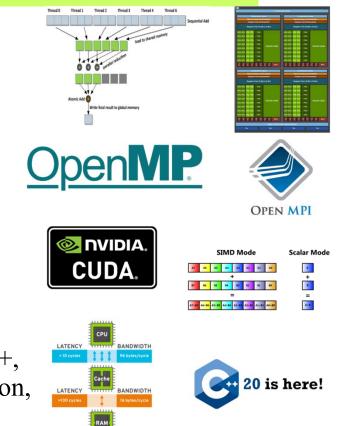
- -introducing new classes of algorithms, protocols, and programming models, and providing radical performance gains with quantum parallelism
- -motivating hybrid supercomputing architectures involving classical and quantum processors in a large-scale distributed system

Parallel and High Performance Computing

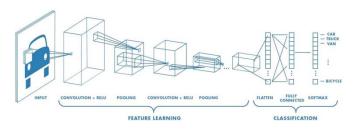
- Big data analysis, machine learning, and largescale scientific simulations require an immense compute power
- Processor frequency stagnates due to physical constraints (stuck at around 5-6GHz for quite a while)
- Using multiple connected machines (supercomputers) simultaneously is the only way forward for large-scale applications
- Programming, orchestrating, and exploiting the potential of such machines is poses challenges in terms of
 - algorithms
 - compute architecture
 - programming

Irène Rome, 300K CPU and 655K GPU cores

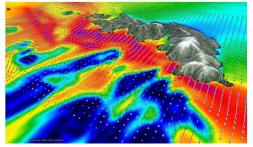
Nvidia A100 GPUs in a compute node

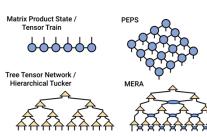


Apple A14 chip with CPU, GPU, and accelerators


What we learn

- Parallel algorithms and complexity
- Parallel computer architecture
- Multi-core parallel programming
- Distributed parallel programming
- GPU programming
- Low-level code optimization and tuning (memory, cache, vector units, ...)
- Other programmation skills (object-oriented, template metaprogramming using modern C++, compilers, scientific programming using Python, etc.)

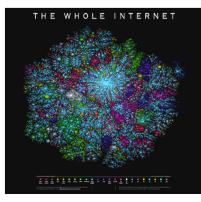

Applications


Deep neural network training + inference

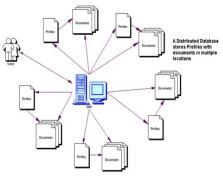
Droplet simulations

Climate and weather simulations

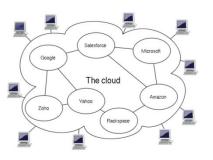
Tensor networks for quantum states


Other HPC applications

NASA Orion takeoff



Distributed Systems and Algorithms


Internet

Distributed DB

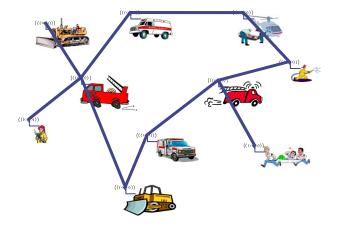
Cloud

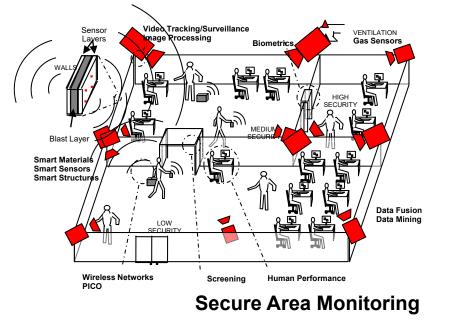
BitTorrent

Bitcoin Net

Parallel computing

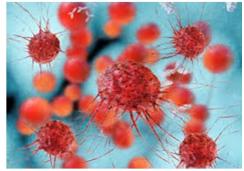
Algorithms for Distributed Systems


Mobile or fixed sensor networks, IoT



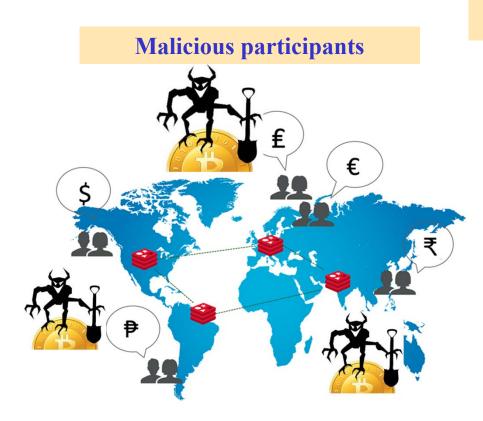
ZebraNet - wildlife tracking

EMMA pollution monitoring

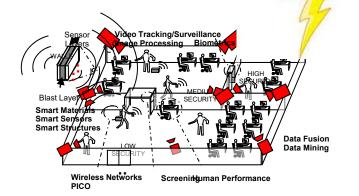

Algorithms for Distributed Systems

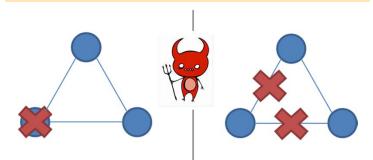
In Nature

Small fraction of the Organic Chemistry Network (~0.001%). Here, the nodes represent chemical compounds, which are connected by directed arrows representing chemical reactions.

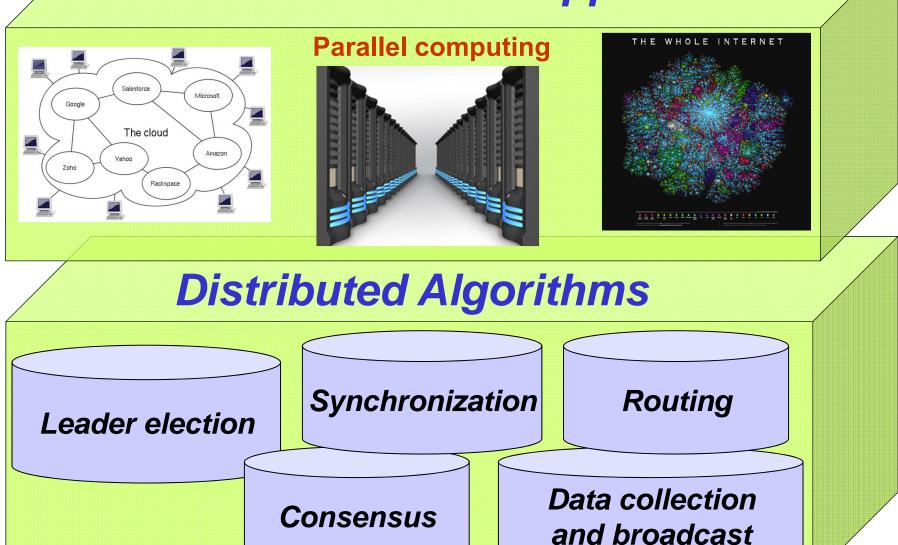

Distributed system characteristics

- The system is composed of several computational entities, called processes
- Processes are **remotely distributed and independent**
- Frequently even without any common shared memory
- The communication is thus non-instantaneous, done either by shared memory, or by messages (routing of the messages takes time)
- Processes must collaborate to **realize a common task**

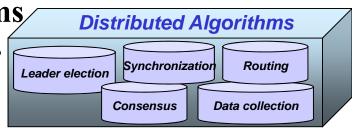



Real systems are subject to failures

Memory, communication or program corruptions

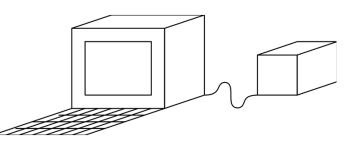


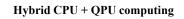
Nodes or link crashes

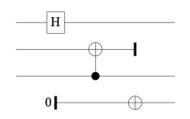

Distributed Protocols/Applications

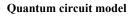
Distributed algorithms

- Distributed applications are based on a common set of fundamental problems
 - If we can solve these problems efficiently, implement these applications efficiently.




- The goal of the domain of distributed algorithms is :
 - to identify (extract) these fundamental problems
 - describe them formally
 - design and analyze efficient solutions/algorithms for them
 - prove their correctness and performance
 - study the limits and capabilities of distributed systems
 - impossibilities to solve a problem
 - lower bounds on time/messages/energy ...




Quantum computing

- Quantum computing leverages specific properties of quantum mechanics (superposition, entanglement) to carry out operations
- Potentially exponential speedup in computations (an operation on n qubits modifies 2ⁿ coefficients simultaneously
- Exaflop supercomputers (10¹⁸ flop/s) will be probably beaten by a 60 qubit quantum computer, and in a more energy efficient manner (10⁻⁴ MWh vs 21 MWh).
- Main target domains
 - quantum chemistry, biology
 - artificial intelligence
 - cryptography
 - optimizaiton
 - computational finance
 - scientific simulations, ...

UNIVERSITE PARIS-SACLAY

FACULTÉ DES SCIENCES

Obligatory QDCS courses distributed, HPC, quantum,

optimization, programming

M1

- 1.[M1QDCS] Robust distributed algorithms
- 2.[M1QDCS] Self-stabilizing distributed algorithms
- **3.[M1QDCS] Parallel algorithms**
- 4.[M1QDCS] High performance computing
- 5.[M1IoT] MPI programming
- 6.[M1QDCS] Scientific computing
- 7.[M1QDCS] Introduction to quantum algorithms and programming
- **8.[M1MPRI]** Foundations of quantum information
- 9.[M1QDCS] Modeling et optimization of discrete systems
- **10.[M1QDCS] Games, learning, and optimization of complex systems**
- 11.[M1QDCS] Object-oriented C++ programming
- 12.[M1QDCS] Advanced C++ programming

M2

- 1.[M2QDCS] Natural algorithms
- 2.[M2QDCS] Distributed computing by mobilg agents
- 3.[M2QDCS] GPU programming
- 4.[M2QDCS] Data parallel computing in C++
- **5.[M2QDCS] Tensor computations**
- 6.[M2QDCS] Advanced quantum computing and error correction
- 7.[M2QDCS] Simulation of quantum processors
- 8.[M2QDCS] Frontiers of parallel, distributed, and quantum computing
- 9.[M2QDCS] Stochastic optimization
- 10.[M1/M2QDCS] TER (Task-parallel GPU+CPU matrix multiplication)

QDCS track generalities

- The teaching is in English
- Disciplinary courses block
 - Obligatory QDCS courses (slight personalization is possible)
 - Optional courses : Courses from other computer master tracks at Paris-Saclay (AI, DS, IoT, MPRI, SETI, ArteQ)
- Soft skill courses block: complementary professional skill courses
 - languages (English, French, other), communication, life in an enterprise, research training, conferences, sports.
- **Internship**/TER block:
 - In M1 : 1+ month internship (or a summer school / training) and a TER project (Travaux d'Etude et de Recherche) in a research laboratory
 - In M2 : 6 month internship in a laboratory or company

Questions ?

- M1 QDCS coordinator: Janna Burman (janna.burman@universite-parissaclay.fr)
- M2 QDCS coordinator: Oguz Kaya (<u>oguz.kaya@universite-paris-saclay.fr</u>)
- **QDCS Secretary:** Eva Perin (eva.perin@universite-paris-saclay.fr)
- **Distributed computing theme referent:** Janna Burman
- **High performance computing theme referent:** Oguz Kaya
- Quantum computing theme referent: Renaud Vilmart (renaud.vilmart@inria.fr)