universite PARIS-SACLAY

FACULTÉ DE PHARMACIE

Formation of C-O bonds or C-N bonds

Laurent Ferrié Chargé de Recherche CNRS-BioCIS -Université Paris Saclay laurent.ferrie@universite-paris-saclay.fr

Some C-O and C-N Marketed Drugs

Carbon-Oxygen Functions

= Fonctions that must be known

Carbon-Nitrogen Functions

Oxygen Properties

$R_1 \overset{\bullet}{} R_2 \qquad R_1 \overset{\bullet}{} \overset{\bullet}{} H$ Ethers Alcohols

-2 bonds as neutral
-2 Lone electrons pairs
-Very electronegative
-Weakly nucleophilic and basic

but moderatly acidic : -**pKa** ROH₂⁺/ROH ≈ −1, **pKa** ROH/RO⁻ ≈ 15

pka = Acid Dissociation Constant:

 $HA \leftrightarrow A^- + H^+$ pKa = $-\log Ka = \log [HA]/[A^-][H^+]$

- At pH = pKa, both species are in equal concentration
- pH and pka are logarithmic value (base 10)

eg A pH value 2 higher or lower to pka means that a species (HA or H^+/A^-) is 100x more concentrated.

Oxygen Properties: Effect of the Conjugaison

Nitrogen Properties

Nitrogen Properties: Effect of the Conjugaison

Aniline Ar-NH₃⁺/Ar-NH₂ ≈ **4.5** Ar-NH₂/Ar-NH ⁻≈ **30** Amide RC(O)NH₃⁺/R1C(O)NH₂ ≈ 1 RC(O)NH_{2/} RC(O)NH⁻ ≈ 15

Nitrogen Properties: Donnor Effect

-<u>In contrast, Nitrogen enhances nucleophilic and</u> **basic properties** of carbonyl group or imine group:

Amides , carbamates and ureas are rather good Lewis bases.

Guanidines , amidines are very strong bronsted base.

Electron-Donating groups: Inductive and Mesomeric Effects

To have a comprehensive tables of pKa values of organic and inorganics species see Bordwells, Williams, and Evans tables at https://organicchemistrydata.org/hansreich/resources/pka/

Electron-withdrawing groups: Inductive and Mesomeric Effects

univer

PARIS-SACL

To have a comprehensive tables of pKa values of organic and inorganics species see Bordwells, Williams, and Evans tables at <u>https://organicchemistrydata.org/hansreich/resources/pka/</u>

Formation of C-O Bonds: Alkylation/Nucleophilic Substitution (1)

Principle: Organic chemistry is mostly a question of static interactions: **Opposites attract**

However if the nucleophile and the electrophile are neutral the reaction is very slow (or simply does not work). →Needs of an activation!

PARIS-SA

Formation of C-O Bonds: Alkylation (2)

S_N1 is observed on tertiary carbons and in general when the carbocation can be stabilized (e.g. conjugation)

 $R^{R^{2}}_{R^{3}}C^{O}_{R^{1}} + R^{1}O^{O}_{R^{4}}C^{R^{2}}_{R^{4}} = \begin{bmatrix} R^{2} \\ \oplus C^{C} - R^{3} \\ R^{4} \end{bmatrix} \xrightarrow{R^{4}} R^{4} = alkyl \quad (Base) \\ X = Halide, sulfonate \\ or H_{2}O, MeOH, AcOH, etc.. \end{bmatrix} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} R^{2} \xrightarrow{R^{3}} \xrightarrow{R^{3}}$

How to determine easily if we are in the $S_N 1$ or $S_N 2$ case?

S_N1 reaction always involves acid activation of the electrophile (**carbocation**) and/or a tertiary substrates.

S_N2 reaction always involves base activation of the nucleophile (**anion**) and a primary or secondary substrates

S_N2 is observed on primary or

secondary carbons

Alkylation with Oxygen Atom: $S_N 2$

Alkylation with Oxygen Atom: S_N1 (Halides)

The Carbocation: the Determining Step

The determining step is the formation of the carbocation.

Carbocation formation can be enhanced by using <u>a cation having a high affinity with halides</u> (usually **Silver (Ag)** or Lead (Pb))

These metals forms <u>insoluble salts</u> which displaced the equilibrium to the carbocation

Anion or not Anion, that is the question

Unlike $S_N 2$, the nucleophile does not necessarily have to be an anion.

In fact, **the carbocation is a <u>very reactive</u> species** and can react directly with OH groups.

<u>A base with a lower pKa than alcohol</u> can be used to scavange the acid formed.

Stabilization Recipe

Carbocations are stabilized by the conjugaison

on, Yellow color due to conjugaison over 16 Carbons

PARIS-SA

Alkylation with Oxygen Atom: S_N1 (Acid Activation)

Alkylation: Examples with Nitrogen Atom

The Reason Behind the Non-Selectivity

Nucleophilicity of amines are in relationship with their pKa nucleophily ranking from the least to the most:

The **more the amine is substituted** by an alkyl group, **the more nucleophilic it is**

That explains the **leak of** selectivity for a direct alkylation

Alkylation: Examples with Nitrogen Atom (2)

-The use of an indirect route required:

From phtalimides salts: Gabriel Synthesis (1887)

Alkylation: Examples with Nitrogen Atom (3)

From Azides:

Formation of C-N Bonds: Alkylation (4)

-Formation of Secondary Amides

-Formation of Nitroalcanes

Formation of C-N Bonds: Alkylation (4)

-Formation of Nitriles

Conjugated Addition: Principle

- Amines are better substrates for this transformations than alcohols.
- Conjugated addition is limited to substrates with an electron with-drawing groups (NO₂, CN, ester, ketones, aldehydes, etc...)

Conjugated Addition: Exemples with Nitrogen and Oxygen

Aromatic Substitution (1): Aromatic Nucleophilic Substitution

-Direct Nucleophilic Substitution on aromatic ring and Sp2-carbons are not possible in general.

<u>Note:</u> Metal coupling reaction (Pd, Cu, Ni) can mediate sometimes the transformation. It will be viewed further in M2.

-Aromatic Nucleophilic Substitution:

-Works only if a strong electron-withdrawing group is present -Reactivity of halides is inverse in S_N^{Ar} compared to S_N^2 : F>Cl>Br>l

UNIVERSITE PARIS-SACLAY Acylation : Esterification (1)

-Acid catalysis: It needs a displacement of water or a dehydrating reagent

Acylation : Esterification (2)

-Anhydrides or acyl chlorides

Acylation : Peptide Synthesis (1)

Formation of Amides:

-Amides cannot be prepared by acid catalysis (inactivation of amine by protonation)
-Anhydrides and acyl chlorides are excellent reagents for their formation
-Amines are more reactive than alcohols.

Acylation : Peptide Synthesis (2)

Peptide Synthesis: Needs of Iterative acylation on sensitive substrates.

-Preparation of acyl chloride and anhydrides is not always convenient (acid sensitive group, epimerization).

-Use of special reagents for carboxylic acids activation.

-HOBt generally prevents the epimerization process.

Oxidations of Alcohols (1)

-Chromium reagents: Versatile, cheap but hazardous, no atom economy. Slight acidic conditions.

Oxidations of Alcohols (2)

-Swern Oxidation and related transformations: cheap, selective but stench (formation of Dimethyl sulfide) byproduct production, no atom economy, Slight basic conditions,

-Others reagents: Research on alcohol oxidation is sill under development to to improve selectivity, and make greener process (TEMPO reagent, metal catalyzed oxidation, etc...)

Reduction of Carbonyls: Aluminium Reagents (1)

-Reactivity scale: Carbonyl groups have different reactivities. Reagents can be used depending their reactivity.

<u>Aluminium reagents:</u> -LiAlH₄ : The strongest. Reduces every carbonyl group (and beyond). Unselective, hazardous: reacts violently with water.

Reduction of Carbonyls: Aluminium Reagents (2)

-DIBALH (<u>DilsoButylALuminium Hydride</u>): -Reduce most of carbonyl groups

-Can be selective in the transformation of cyanide and amide into aldehyde.

-Sometimes work for esters (substrate dependant)

Reduction of Carbonyls: Boron reagents

-Boron reagents:

-NaBH₄: Mild Reducing reagent. Selective to **ketones** and **aldehydes**. Reduce also reactive carbonyl groups such as <u>acyl chlorides</u> or <u>anhydrides</u>.

-LiBH₄: reduce also esters

Reduction of Imines: Boron reagents

-Reduction of Imines and Imminiums

-NaBH₃CN : <u>Reduction of protonated imines and iminiums</u>:

Reductive amination

-Reagents of Choice: NaBH₃CN (poorly reactive towards aldehydes and ketones but specific of iminiums)

Reduction of Carboxyls: Boron reagents (2)

-Selective Reduction of Carboxylic acids:

-BH₃: Unreactive towards cyano, esters or amide groups

Careful: reacts with <u>aldehydes</u>, <u>ketones</u> and <u>alkenes</u>

-NaBH₄ reduction via activation through formation of mixed anhydride,

Reduction: Hydrogenation and Metal Reduction

-Acyl chloride (Rosenmund hydrogenation)

-Nitro groups

Reduction: Summary

Oxydation of Olefins: Dihydroxylation

Stereospecific transformation

Oxydation of Olefins: Epoxidation (1)

Most popular reagent are peracids, but metal catalyzed epoxidation are also widely used.

Oxydation of Olefins: Dipolar Cycloaddition (Ozonolysis)

-**Ozonolysis**: Ozone promotes 1,3-dipolar cycloaddition.

$$R^{1} = R^{2} \xrightarrow{R^{2}} (R^{2} + \frac{1) O_{3}}{2)Reductant} \xrightarrow{R^{2}} (R^{2} + \frac{1) O_{3}}{2} \xrightarrow{R^{2}} R^{2}$$

Oxydation of Alkyne: Dipolar Cycloaddition (Huisgen)

-Nitrogen version of ozonolysis: the Huisgen cycloaddition.

-requires higher temperature, and longer reaction time, thus it reacts only on alkynes. -Cycloaddition products are stables leading to triazoles.

-Copper catalysis improves the process (low temperature, regioselectivity)

-Widely used in Chemical Biology to insert Fluorescent Probes:

→ <u>Chemistry Nobel prize 2022</u>

Oxydation of Olefins: Oxidative cleavage

-Alternative to ozonolysis: Oxidative cleavage

Hydratation

-Hydratation

PARIS-SACL

Markovnikov type Addition.

-Oxymercuration

Hydroboration

-Hydroboration: Formally an hydratation, but sequentially 1 reductive + 1 oxidation step

Anti-Markovnikov type Addition

44

Hydroboration (2)

-Hydroamination : The processus is the same as the one to make alcohol. The oxidative step uses an amino group. Typically a hydroxylamine derivative which includes a leaving group function

Hydratation/Hydroboration for Alkynes

-Hydratation of Alkyne

no reduction step to remove Mercury

-Hydroboration of Alkyne

- **Goal**: Reacting one function chemoselectively in the presence of another one which should have reacted as well
 - Being able to discriminate the same functions in the molecule.

Silyl: - Very versatile. Chemoselective deprotection Ability to remove one silyl group over another one.

Ease of introduction: TMS>TES>TBS>TIPS>TBDPS Ease of cleavage: TMS>TES>TBS>TIPS~TBDPS

Protection: **SiR₃Cl**, imidazole DMF or **SiR₃OTf**, 2,6-lutidine-CH₂Cl₂ (for hindered positions)

Cleavage:

-Fluoride source. Usually TBAF (basic conditions)
Or HF•pyridine (for chemoselective deprotection)
-Acid catalysis also works for TMS, TES or TBDMS
Ex: PTSA, MeOH

Protection of Alcohols: Silyl Ethers (2)

PARIS-SACL

Protection of Alcohols: Benzyl Ethers

Protection of Alcohols: Triphenylmethyl Ethers

-Tritylether: Can be placed only on primary alcohols

Protection: TrCl in pyridine

Cleavage: -acidic conditions AcOH/H₂O or HCl, MeOH

Protection of Alcohols: Acetals

Esters : Protection of Alcohols and Carboxyl groups

-Esters: -Protection of alcohols or carboxylic acids

Protection: Acyl chloride or anhydride (ex: Ac₂O or BzCl) with pyridine for alcohols. Or Carboxylic acid activation (ex: SOCl₂ or DCC)

Cleavage: -NaOH, H₂O Hydrogenation, H₂ Pd/C for Benzyl esters

Acetals: Protection of Diols and Carbonyl groups

-Diols: protection as cyclic ketal

Protection: -Acetanone, cyclohexanone or benzaldehyde, PTSA, CuSO₄ (dry) or molecular sieves 4A Or 1,2-dimethoxypropane, PTSA

Cleavage: PTSA, MeOH/H₂O

Ketones and aldehydes : Protection of ketones and aldehydes

Protection: ethylene glycol PTSA or Ethanedithiol, BF₃.OEt₂

Cleavage: -PTSA, MeOH/H₂O for ketals

-HgCl, H₂O or NBS, 2,6-lutidine MeCN/H₂O or Mel CaCO₃ MeCN/H₂O for thioketals

Protection of Oxygenated Functions: Selective Cleavage

PARIS-SACL

54

Protection of Amines: Amides and Sulfonamides

-Amides: equivalent of esters

-Sulfonamides: easy to make, inert to most conditions (but hard to remove)

*para-*Toluenesulfonyl (Tosyl)

Protection: Acyl chloride or anhydride (ex: Ac₂O or BzCl) with pyridine **Cleavage**: $-H^+$, H_2O 100 °C 16-24h <u>Trifluoroacetate</u>: KOH/H₂O 0 °C **Protection**: TsCl or MsCl, Et₃N **Cleavage:** Reduction with strong reducing agents

-Na/NH $_3$ or Sodium naphtalenide

Protection of Amines: Carbamates

-Carbamates: the most used protecting groups for amines. Versatile deprotection conditions

Protection: ROC(O)Cl, Et₃N or [ROC(O)]₂O (for Boc)

Cleavage:

-Boc: acid conditions. Usually, 6N HCl or CF₃COOH

-<u>Cbz</u>: *hydrogenolysis*. H₂, Pd/C

-<u>Fmoc</u>: *Basic conditions*. Usually DBU or pyrrolidine.

-<u>Troc</u>: *Reductive conditions.* Usually Zn, aq NH₄OAc, THF

