UNIVERSITE PARIS-SACLAY

FACULTÉ DE PHARMACIE

M1 Development of drug and health products

OTU 06 : Basic structural elucidation

Practical work in Mass Spectrometry

Julia Kaffy 10th, 14th february , 7th march 2025 (6h) julia.kaffy@universite-paris-saclay.fr

2024-2025

Mass spectrometry (MS)

- Method based on the interaction of matter with charged particles
- Important source of information :
 - molecular weight
 - molecular Formula (High Resolution SM)
 - knowledge of characteristic fragments of the skeleton or of functional groups present in a molecule
- Method valid for small organic molecules but also macromolecules
- The MS does not give any information on the molecules but on the **molecular ions** and **the fragments** which arise from them

 \rightarrow only **<u>charged particles</u>** are detected

Mass spectrometer

1. A small sample is ionized, usually to cations by loss of an electron. **The Ion Source**

(Electronic Impact or El, Chemical Ionization or Cl, Electrospray Ionisation or ESI, Matrix Assited Laser Desorption-Ionisation or MALDI...)

- 2. The ions are sorted and separated according to their mass and charge. The Mass Analyzer
- 3. The separated ions are then measured, and the results displayed on a chart. The Detector

Mass spectrometry : principle

Mass spectrum

= Visualization of the **different types of ions** formed in the source and their **respective intensity** accompanied by their **isotopes**

Key terms for the analysis:

- molecular ion peak (M+•)
- cation radical

Isotopes and MS

\rightarrow Table of natural abundance of common elements

			M +	• 1	M + 2	
		Masse	Masse	%	Masse	%
	Н	1	2	0,016		
	С	12	13	1,08		
	N	14	15	0,36		
	0	16	17	0,04	18	0,20
	F	19				
	Р	31				
	S	32	33	0,78	34	4,39
	CI	35			37	32
	Br	79			81	97,5
	I	127				

JNIVERSITE FACULTÉ DE PARIS-SACLAY PHARMACIE

Isotopes and MS

 It measures individual atoms and enables the isotopic constitution to be determined

The number of carbons in a molecule:

carbon is roughly 99% ¹²C and 1% ¹³C, then in a molecule containing 10 carbon atoms, the M⁺⁺ peak will be accompanied by a peak at M+1 having 10% intensity (containing molecules having one ¹³C atom).

```
nC = (intensity of M+1/M)*100
```

✓ Halogene-containing molecules:

Fig. 6.18 Isotope patterns of Br, Br_2 , Br_3 species.

Ionization of the molecule by Electron Impact (EI)

→ first reaction producing **M+**[•] = **molecular ion peak**

Ionization of the molecule by Electron Impact (EI)

→ first reaction producing **M+**[•] = **molecular ion peak**

Depending on its stability it can fragment : $M^{+} \longrightarrow M_1^{+} + M_2$ giving another **cation radical** + a neutre and/or $M^{+} \longrightarrow M_3^{\oplus} + M_4$ giving a cation + a radical

Ionization of the molecule by Electron Impact (EI)

 \rightarrow first reaction producing M+[•] = molecular ion peak M + 1e⁻ \rightarrow M⁺+ 2e⁻

Depending on its stability it can fragment :

 $M^{+} \longrightarrow M_1^{+} + M_2$ giving another cation radical + a neutre and/or $M^{+} \longrightarrow M_3^{\oplus} + M_4$ giving a cation + a radical

 \rightarrow the process can continue, depending on the stability of the formed fragments

Note:

it is a cation radical

 $M_{1}^{+\bullet} \longrightarrow M_{5}^{\oplus} + {}^{\bullet}M_{6}$ $M_{3}^{\oplus} \longrightarrow M_{7}^{\oplus} + M_{8}$ $M_{2}^{\oplus} \longrightarrow M_{7}^{\oplus} + M_{8}$ $M_{3}^{\oplus} \longrightarrow M_{7}^{+\bullet} + M_{8}$ $M_{3}^{\oplus} \longrightarrow M_{9}^{+\bullet} + {}^{\bullet}M_{10}$ $M_{3}^{\oplus} \longrightarrow M_{10}^{+\bullet} \longrightarrow M_{10}^{+\bullet} + {}^{\bullet}M_{10}$ $M_{3}^{\oplus} \longrightarrow M_{10}^{+\bullet} \longrightarrow$

+• _____ (+)

- Simple fragmentations (1 bond is cleaved)
- Transpositions (2 bonds are cleaved)

MS : the "nitrogen rule"

The nitrogen rule states that <u>organic compounds</u> containing exclusively <u>hydrogen</u>, <u>carbon</u>, <u>nitrogen</u>, <u>oxygen</u>, <u>silicon</u>, <u>phosphorus</u>, <u>sulfur</u>, and the <u>halogens</u> having :

> an **even molecular weight** contains **an even number of nitrogen (0, 2, 4 ...)**

> an odd molecular weight contains an odd number of nitrogen (1, 3, 5 ...)

→ The nitrogen rule is a general principle very useful when attempting to solve <u>organic mass spectrometry</u> structures

MS : the "nitrogen rule"

	Even Mass (0, 2, 4)	Odd Mass (1, 3, 5)
R+•	even number of N	odd number of N
R ⁺	odd number of N	even number of N

In practice, in a molecule without nitrogen:

- An ion having an even mass is a cation radical M^{+•}

- An ion having an odd mass is a cation M⁺

MS rules : simple fragmentations and transpositions

In practice, in a molecule **without a nitrogen** (M^{+•} **is even 2, 4, 6...**)

A simple fragmentation generates

a charged fragment and a neutral radical, both having an odd mass

A transposition generates a cation radical and a neutral molecule

M⁺• →	M ₃ ^{+•} +	M_4	(cation radical + neutral)
Even	Even	Even	
mass	mass	mass	

Degree of unsaturation

Degree of unsaturation = $\frac{2C + 2 + N - H - X}{2}$

Let's practice with Electron Impact exercises

