

Lundi 24 mars 2025 Durée 20 mn

	NOM :
A part la question 2b	Prénom :
A part la question 2b qui dépend de 2a, qui dépend questions toutes les questions sont indépendantes.	Premier principe de la thermodynamique

- 1) **Gaz parfait** : on notera $\overline{c_P}$ sa capacité thermique molaire à pression constante et $\overline{c_v}$ sa capacité thermique molaire à volume constant.
 - a) Donner la relation de Mayer qui lie $\overline{c_P}$, $\overline{c_v}$ et R la constante des gaz parfaits.
 - b) Donner la définition de l'indice adiabatique γ en fonction de $\overline{c_P}$ et $\overline{c_v}$.
- 2) Une mole de gaz parfait monoatomique occupe initialement le volume V_A à la température T_A et sous la pression P_A (état A).
 Le gaz subit une compression isochore réversible qui fait doubler sa pression (état B).
 - a) Exprimer ΔU_{AB} en fonction de la constante des gaz parfaits R et T_A . On donne $\overline{C_V} = \frac{3}{2}$ R.

b) Que vaut WAB? Justifier. En déduire QAB en fonction de R et TA.

c)	Puis le gaz subit une détente adiabatique réversible qui fait doubler son volume (étarexprimer la pression P_C en fonction de P_A et γ . Détailler les étapes.	t C).
l' C	Pour finir le gaz est comprimé de façon réversible et isotherme jusqu'à retrouver état A. Que vaut la variation d'énergie interne ΔU_{CA} ? Justifier. Que vaut la variation d'enthalpie ΔH_{CA} ? Justifier.	