Introduction to natural language processing for health and biological questions

Nona Naderi Université Paris-Saclay, CNRS, Laboratoire Interdisciplinaire des Sciences du Numérique

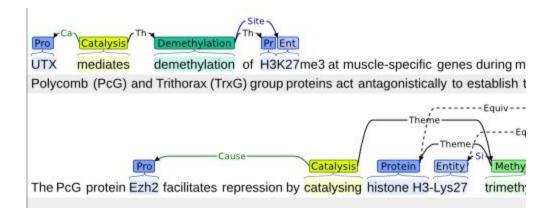
Getting the data

Preparing annotations is expensive and time consuming.

Domain-specific tasks require knowledge of domain.

The annotations need quality control: computing inter-annotator agreement.

Brat rapid annotation tool



Named Entity Recognition

Assigning concept types to the text and classifying the text into a set of predefined categories of interest.

Categories can be domain-specific or not.

For example, person, location, date/time, protein, organism, drugs,...

Challenging, why?

Example: metonomy

England won the world cup.

Other problems in NE

- Variations, abbreviations
- Ambiguity
- Punctuations, spellings,...

Why NER?

- Relation extraction
- Question Answering
- Information search

Simple lookup approach

Only recognizing the entities stored in lists (gazetteers)

Advantage: It is simple and fast

Disadvantage: collection, maintenance, ambiguity

Feature engineering

Designing a set of informative feature, for example POS tags, capitalization, numerals, Greek letters, lexical features, previous words...

Evaluation metrics

Token accuracy: what percentage of tokens got correct labels. Problematic,

why?

Standard evaluation: per entity not token

Precision, Recall, F-measure (strict, lenient)

File Photo IOB encoding The Defence B-group Research I-group Development I-group Organisation I-group **DRD0** B-group 0 is working 0 four projects 0 develop 0 technologies

Normalization

Assigning the extracted information a unique identifier from vocabularies, ontologies, or metathesaurus e.g., UMLS, Gene Ontology, ...

Example datasets: MedMentions

2/838/42	120	138	KI-PCK assay	1002 UMLS:C1/09846		
27838742	758	771	delicaflavone	T103 UMLS:C1254351		
27838742	780	801	autophagic cell	death T038	UMLS:C:	1326207
27838742	829	835	LC3-II T103	UMLS: C371126	8	
27838742	839	844	LC3-I T103	UMLS: C371408	37	
27838742	856	882	autophagy-relate	ed proteins	T103	UMLS:C4277731
27838742	916	943	acidic vesicular	organelles	T017	UMLS: C0029219
27838742	948	961	autolysosomes	T017 UMLS	:C0230822	
27838742	969	978	cytoplasm	T017 UMLS	017 UMLS:C0010834	
27838742	988	999	lung cancer	T038 UMLS	B UMLS:C0684249	
27838742	1000	1004	A549 T017	.549 T017 UMLS:C4277577		
27838742	1009	1019	PC-9 cells	T017 UMLS	:C0007634	
27838742	1059	1072	Delicaflavone	T103 UMLS	:C1254351	
27838742	1073	1086	downregulated	T038 UMLS	:C0013081	
27838742	1091	1116	expression of ph	phospho-Akt T033		UMLS:C2697945
27838742	1118	1130	phospho-mTOR	T103 UMLS	:C0033684	
27838742	1136	1150	phospho-p70S6K	T103 UMLS	:C0033684	
27838742	1217	1226	autophagy	T038 UMLS	:C0004391	
27838742	1245	1248	Akt T038	UMLS: C151584	14	
27838742	1251	1255	mTOR T038	UMLS:C1515673		
27838742	1258	1264	p70S6K T103	UMLS: C007333	37	
27838742	1265	1272	pathway	T038 UMLS	:C0037080	
27838742	1276	1280	A549 T017	UMLS: C427757	7	
27838742	1285	1295	PC-9 cells	T017 UMLS	:C0007634	4.0
			120			10

Exercise

A simple bag-of-words model for NER:

https://github.com/juand-r/entity-recognition-datasets/blob/master/data/WNUT17/

Ethical considerations

Language involves humans:

Corpus collection: Privacy, potential harms, imbalanced

Corpus processing: Avoiding bias processing, reproducibility, generalizability

Corpus distribution: availability, confidentiality, copyright, detailed description, quality assessment

Project

Sentence classification of the PubMed 200k RCT dataset:

https://github.com/Franck-Dernoncourt/pubmed-rct

A baseline model with bag of words.

A model with pre-trained biomedical (word) embeddings.

A deep learning based model. (not needed)

Provide a report with the description of your method, evaluation, comparison of the models performance, results, discussion of your results, and error analysis.