UNIVERSITE PARIS-SACLAY

FACULTÉ DE PHARMACIE

Animal models of anxiety-depression : use for pharmacology

M1

laurent.tritschler@ universite-paris-saclay.fr

January 31st 2025

Abbreviations

NSF : novelty suppressed feeding FST : Forced swim test CORT model : mouse model of anxiety-depression based on chronic administration of corticosterone CMS : Chronic mild stress AHN : Adult hippocampal neurogenesis

To model anxiety / depression in animals ?

Creative validity : Same symptoms as the human disease : in psychiatry : what seems depression for animals ?

Predictive validity : The Treatment's answer of the model should be similar to the ones observed in the human illness

Theoretical validity : Involvement of the same mechanisms between the model and the human pathology.

I- Creative and predictive validities

- Social interactions
- Learning
- Curious:
 - Exploration behavior
- Fearful
 - afraid of big empty spaces
 - afraid of heights

I- Creative and predictive validities Behavioural tests

I- Creative and predictive validities *Predictive test of anxiolytic activity : the openfield test*

I- Creative and predictive validities **Openfield test : results**

в 80 % Time in Center 60 40 20 0 control 10 Diazepam Dose (mg/kg) 100 в % Time in Center 80 60 40 20 0 Control 30 3 10 Fluoxetine Dose (mg/kg)

> universite PARIS-SACLAY

100 -

Adapted from Birkett et al., 2011

Predictive Tests of anxiolytic activity : Elevated mazes

The Elevated Plus Maze

Anxio/depressive mouse

Anxio/depressive mouse treated Chronically with an antidepressant

Predictive Tests of anxiolytic activity : The Light-Dark Case Test (Crawley et al 1981)

The Light-Dark Case Test

Adapted from Birkett et al., 2011

Predictive Tests of anxiolytic /antidepressive activity: Le Novelty Suppressed Feeding (Santarelli et al., 2003)

Predictive Tests of antidepressive activity: Forced Swim Test (Porsolt Test) (Porsolt et al., 1997)

Porsolt et al., 1977

Forced Swim Test: results

Adapted from Dulawa et al., 2004

Forced Swim Test: results

Predictive Tests of antidepressive activity: Tail Suspension Test (Steru et al., 1985)

Predictive Tests of antidepressive activity:

Splash Test: measure of the grooming activity (David et al., 2009)

To perform a screening protocol

- To choose the specie
- To choose the test
 - Targeted screening vs. non-targeted screening
 - Animal number
- To choose the reference (positive/negative control)
- Control group
- Way of administration
- Doses
- Acute vs. chronic administration

DSM V and Major depressive episodes

PARIS-SACLAY

Stahl's Essential Psychopharmacology, 3rd edition, 2008

Endophenotype in the depression models

- Anhedonia
- Behavioral despair
- Changes in the feeding/the weight
- Neuroanatomical
- Endocrine changes
- Sleep alterations
- Anxious behavior

Etiological models of the depression

The Unpredictible Chronic Stress

Chronic Mild Stress

0]

5 ۵,

Belzung, 2007

Animal modelization of the depression

Belmaker RH, Agam G. Major depressive disorder. N Engl J Med. 2008;358:55-68.

Carroll BJ, Cassidy F, Naftolowitz D, et al. Pathophysiology of hypercortisolism in depression. Acta Psychiatr Scand Suppl. 2007;(433):90-103.

 $\label{eq:CRH} CRH=corticotropin-releasing hormone; \ BDNF=brain-derived neurotrophic factor; \ CSF=cerebrospinal fluid; \ ACTH=adrenocorticotropic hormone.$

Belmaker RH. CNS Spectr. Vol 13, No 8. 2008.

CORT model: "anxio-depressive"

The CORT model

	CORT model	
	Vehicle	
P	Vehicle fluoxetine	##
Taby	Corticosterone 35ug/ml/day	
0	Corticosterone 35ug/ml/day + fluoxetine	
V		
		0 VEH IMI FLX VEH IMI Corticosterone 35 ug/ml/d + +
	Control animal Corticosterone- treated animal	

David, D. J., B.A. Samuels, et al. (2009). "Neurogenesis-dependent and independent effects of fluoxetine in an animal model of anxiety/depression." Neuron 62(4): 479-493.

FLX

CORT model: results

David et al (2009) Neuron; Rainer et al (2011) Int J Neuro

The CORT model

Vehicle-treated animal

Drugs	Pharmacological target	Phenotype	Neurogenic effects
Fluoxetine	Serotonin reuptake inhibitors	Reversed anxiogenic/depressive-like phenotype No effect on the flattened circadian rhythm induced by chronic corticosterone	Reversed the decrease in cell proliferation induced by chronic corticosterone Increased all steps of adult hippocampal neurogenesis For all neurogenic parameters in the hippocampus: effects more pronounced in corticosterone-treated mice
Imipramine	Tricyclics	Reversed anxiogenic/depressive-like phenotype	Not tested
Reboxetine	Norepinephrin reuptake inhibitors	Reversed anxiogenic/depressive-like phenotype	Not tested
Agomelatine	MT1/MT2 agonist and 5-HT2 C antagonist	Reversed anxiogenic/depressive-like phenotype Reversed the flattened circadian rhythm induced by chronic corticosterone	Reversed the decrease in cell proliferation induced by chronic corticosterone Reversed (ventral effects for maturation)

¹David et al., 2009; Rainer et al., 2011; ²Mendez-David et al., 2013

Animal Modelization of Anxiety and Depression

David, D. J., B.A. Samuels, et al. (2009). "Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression." Neuron 62(4): 479-493.

From clinic to pre-clinic

Conclusions (I)

- A variety of models
- Models depending of species particularities
- Produce many scientific datas useful for the human pathologies
- Limits in the interpretation as well as for the human transposition

Conclusions (II)

universite PARIS-SACLAY

researchers need stricter safeguards and better statistics to ensure their science is solid

II- Theoretical validity

- Several models can predict the effectiveness of a treatment (predictive validity)

- The mechanisms involved in the models and in humans must be evaluated

Theoretical validity : the example of the adult hippocampal neurogenesis

Adapted from David, al., (2009)

Theoretical validity : the example of the adult hippocampal neurogenesis

X ray irradiation to suppress the AHN

Openfield

Adapted from David, al., (2009)

Theoretical validity : the example of the adult hippocampal neurogenesis : clinical data

Antidepressants increase neural progenitor cells in the human hippocampus

Maura Boldrini*123, Mark D Underwood12, René Hen1456, Gorazd B Rosoldija1.27, Andrew J Dwork1.28,

DG volume

Controversy...

LETTER

.

doi:10.1038/nature25975

Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults

Shawn F. Sorrells^{1,2}*, Mercedes F. Paredes^{1,3}*, Arantxa Cebrian-Silla⁴, Kadellyn Sandoval^{1,3}, Dashi Qi⁵, Kevin W. Kelley¹, David James¹, Simone Mayer^{1,3}, Julia Chang⁶, Kurtis I, Auguste², Edward F. Chang², Antonio J. Gutierrez⁷, Arnold R. Kriegstein^{1,3}, Gary W. Mathern^{8,6}, Michael C. Oldham^{1,2}, Eric J. Huang¹⁰, Jose Manuel Garcia-Verdugo⁴, Zhengang Yang⁶ & Arturo Alvarez-Buylla^{1,2}

Manipulating the activity of adult born granule cells

Anatomical acuracy

Selectivity for the cell type (targeting 4 to 6-weeks-old cells)

Neurochemical consequences

microdialysis

42

PHARMACIE

PARIS-SACLAY

To take home :

Animal models: creative predictivity and theorical predictivity need to be taken into consideration

Several models in several tests are necessary

If « one mouse in no mouse » then you should apply the same « rule » for the models and the tests

