Eval 3 : MG2

Important: Toutes les questions des exercices hormis l'exercice 1 doivent être justifiées soigneusement, argumentées. Elles sont évaluées avec la grille critériée.

▶ Exercice 1.

Proposition 1:

Toute famille orthogonale de vecteurs non nuls de E est une famille libre de E.

Preuve:

Donnons-nous une famille orthogonale (u_1, \ldots, u_p) de E.

Si
$$\sum_{i=1}^{p} \lambda_i u_i = 0_E$$
 alors $\forall j \in \{1, \dots, p\}, \langle u_j, \sum_{i=1}^{p} \lambda_i u_i \rangle = 0$.

$$\overbrace{i=1} \\
Donc \ \forall j \in \{1, \dots, p\}, \sum_{i=1}^{p} \lambda_i \langle u_j, u_i \rangle = 0. \\
Or \ \forall i \neq j, \langle u_j, u_i \rangle = 0.$$

$$Or \forall i \neq j, \langle u_j, u_i \rangle = 0.$$

Donc

$$\sum_{i=1}^{p} \lambda_i \langle u_j, u_i \rangle = \lambda_j \langle u_j, u_j \rangle \underset{(3)}{=} \lambda_j ||u_j||_2^2.$$

On en déduit que pour tous les j, $\lambda_j ||u_j||_2^2 = 0$. Or pour tout j, $||u_j||_2 \neq 0$. Donc pour tout j, $\lambda_j = 0$.

Dans la preuve ci-dessus, justifiez chaque point marqué par un chiffre. Pour les points 2,3 c'est à vous de trouver l'argument.

Pour les points 1, 4, vous devez choisir parmi les arguments suivants :

- d'après l'inégalité triangulaire.
- en prenant le produit scalaire par u_i des deux côtés de l'égalité.
- par linéarité à gauche du produit scalaire.
- par linéarité à droite du produit scalaire.
- car la norme euclidienne est définie.
- car si un produit de réels est nul, l'un des deux est nul.
- car la famille $(u_i)_{1 \leq i \leq p}$ est orthogonale.
- car les vecteurs u_i sont unitaires.
- car la variable de sommation est muette.
- car le produit scalaire est positif.
- car la norme euclidienne est homogène.
- par définition de la norme euclidienne.

▶ Exercice 2

- 1. Quelles phrases sont vraies? Justifiez bien pourquoi elles sont vraies ou fausses.
 - (a) Le taux d'accroissement $\frac{\partial_x f(1,2+h) \partial_x f(1,2)}{h}$, s'il a une limite finie quand h tend vers 0, tend vers $\partial_{xx}^2 f(1,2)$.
 - (b) Pour $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe $C^1(\mathbb{R})$, un point critique est un extremum local.

2. Déterminer toutes les fonctions h de classe $C^1(\mathbb{R}^2,\mathbb{R})$ vérifiant

$$\begin{cases} \partial_x h(x,y) = 3x + y \\ \partial_y h(x,y) = x + \cos(4y) \end{cases}$$

► Exercice 3.

1. Démontrer que

$$f:(x,y)\mapsto \left\{ egin{array}{ccc} \dfrac{2x^4-y^2x^2}{x^2+y^2} & {
m si} & (x,y)\neq (0,0) \\ 0 & {
m si} & (x,y)=(0,0) \end{array}
ight.$$

est continue sur \mathbb{R}^2 .

- 2. Calculez les dérivées partielles pour tout $(x, y) \neq (0, 0)$ de f.
- 3. La fonction f admet-elle des dérivées partielles au point (0,0)? Si oui donnez les valeurs de $\partial_x f(0,0)$ et $\partial_y f(0,0)$.
- ▶ Exercice 4. Soit $\Omega \subset \mathbb{R}^2$ et $\lambda \in \mathbb{R}$. On considère l'équation aux dérivées partielles

$$(E_{\lambda})$$
 $x\partial_x f(x,y) + y\partial_y f(x,y) = \lambda f(x,y)$

On note $F_{\lambda}(\Omega)$ l'ensemble des fonctions de classe $C^{1}(\Omega,\mathbb{R})$ solutions de (E_{λ}) sur Ω .

On admet qu'une fonction f définie sur $\mathbb{R}^2 - \{(a,b)\}$ est prolongeable par continuité en (a,b) si la limite de f(x,y) quand (x,y) tend vers (a,b) existe et est finie.

• Etude générale

- 1. Démontrer que $F_{\lambda}(\Omega)$ est un sev de $C^{1}(\Omega)$.
- 2. Démontrer que $p_x:(x,y)\mapsto x$ et $p_y:(x,y)\mapsto y$ sont dans $F_1(\Omega)$.
- 3. Soit $\lambda \in \mathbb{R}$ et $f \in F_{\lambda}(\Omega)$ de classe $C^{2}(\Omega)$. Démontrer que $\partial_{x}f$ et $\partial_{y}f$ sont des éléments de $F_{\alpha}(\Omega)$ avec α à déterminer.
- 4. Soient $(\lambda, \mu) \in \mathbb{R}^2$, démontrer que si $f \in F_{\lambda}(\Omega)$ et $g \in F_{\mu}(\Omega)$ alors $fg \in F_{\theta}(\Omega)$ où θ est un réel à préciser.
- 5. Soient $(\lambda, \alpha) \in \mathbb{R}^2$, et $f \in F_{\lambda}(\Omega)$ une fonction strictement positive. Démontrer que

$$f^{\alpha}:(x,y)\mapsto f(x,y)^{\alpha}$$

appartient à $F_{\alpha\lambda}(\Omega)$

6. Dans cette question, $\Omega = \mathbb{R}^2 - \{(0,0)\}$. Pour $\lambda \in \mathbb{R}$, on définit $r_{\lambda} : \Omega \to \mathbb{R}$ par

$$\forall (x,y) \in \Omega, \quad r_{\lambda}(x,y) = (\sqrt{x^2 + y^2})^{\lambda}.$$

Démontrer que $r_{\lambda} \in F_{\lambda}(\Omega)$.

7. Sous quelle condition sur λ , r_{λ} est-elle prolongeable par continuité en (0,0)?

• Résolution sur $\Omega = \mathbb{R} \times \mathbb{R}^{\star}_{\perp}$

Dans cette partie $\Omega = \mathbb{R} \times \mathbb{R}_{+}^{\star}$.

- 8. Soit $\phi: \Omega \to \mathbb{R}^2$ définie par $\phi(u, v) = (uv, v)$. Soit $f \in C^1(\Omega)$ et $g: \Omega \to \mathbb{R}$ telle que $g = f \circ \phi$. Montrer que g est de classe $C^1(\Omega)$.
- 9. Justifier que $f \in F_{\lambda}(\Omega)$ si et seulement si

$$v\partial_v g(u,v) = \lambda g(u,v).$$

10. En déduire les éléments de $F_{\lambda}(\Omega)$.