Eval 2: MG2

Cours : preuve étoilée 1

Voici une preuve de certains axiomes montrant que la norme $||u||_2 = (\sum_{i=1}^n |u_i|^2)^{\frac{1}{2}}$ est bien une norme sur \mathbb{R}^n .

Preuve:

$$\forall \lambda \in \mathbb{R}, \forall u \in \mathbb{R}^n, ||\lambda u||_2 = \left(\sum_{i=1}^n |\lambda u_i|^2\right)^{\frac{1}{2}}$$

$$= \left(\sum_{i=1}^n |\lambda|^2 |u_i|^2\right)^{\frac{1}{2}}$$

$$= \left(|\lambda|^2 \sum_{i=1}^n |u_i|^2\right)^{\frac{1}{2}}$$

$$= \left(|\lambda|^2\right)^{\frac{1}{2}} \left(\sum_{i=1}^n |u_i|^2\right)^{\frac{1}{2}}$$

$$= |\lambda| \times ||u||_2.$$

$$\forall u \in \mathbb{R}^n, \forall v \in \mathbb{R}^n, ||u+v||_2^2 = \sum_{i=1}^n |u_i + v_i|^2$$

$$= \sum_{i=1}^n u_i^2 + v_i^2 + 2u_i v_i$$

$$= \sum_{i=1}^n u_i^2 + \sum_{i=1}^n v_i^2 + 2\sum_{i=1}^n u_i v_i$$

$$= ||u||_2^2 + ||v||_2^2 + 2\sum_{i=1}^n u_i v_i$$

Or
$$\sum_{i=1}^{n} u_i v_i \leq ||u||_2 ||v||_2$$
.

Donc $||u+v||_2^2 \le ||u||_2^2 + ||v||_2^2 + 2||u||_2||v||_2$. Donc $||u+v||_2^2 \le (||u||_2 + ||v||_2)^2$ Donc $||u+v||_2 \le ||u||_2 + ||v||_2$

C'est donc bien une norme.

Dans la preuve ci-dessus, justifiez chaque point marqué par un chiffre. Vous devez choisir parmi les arguments suivants.

- par linéarité de la somme.
- car l'inf est un minorant.
- car la fonction $x \mapsto x^2$ est croissante sur \mathbb{R}_+ .
- car la norme euclidienne est définie.
- car |ab| = |a||b| pour a, b réels.
- car $(ab)^2 = a^2b^2$ pour a, b réels.
- car la variable de sommation est muette.

- car $\sqrt{ab} = \sqrt{a}\sqrt{b}$ pour a, b positifs.
- car la fonction $x \mapsto \sqrt{x}$ est croissante sur \mathbb{R}_+ .
- car la norme euclidienne vérifie l'inégalité triangulaire.
- d'après l'inégalité de Cauchy-Schwarz.
- car la norme euclidienne est homogène.

2 QCM/justification

Quelles phrases sont vraies? Justifiez bien pourquoi elles sont vraies ou fausses.

- 1. $f: x \mapsto \begin{cases} \frac{e^x 1}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ est continue en 0.
- 2. Soit $u=(u_1,\ldots,u_n)\in\mathbb{R}^n$, $||u||_2\leq \sqrt{n}||u||_\infty$ pour $||u||_\infty=\max_{1\leq i\leq n}|u_i|$ et $||\cdot||_2$ désigne la norme euclidienne usuelle sur \mathbb{R}^n .
- 3. Soit (u, v, w) est une famille de vecteurs d'un EV E telle que (u, v), (v, w) et (u, v) sont trois familles libres. Alors (u, v, w) est libre.

3 Classique

On se place sur \mathbb{R}^3 muni de son produit scalaire canonique.

- 1. Déterminer une base du sev de \mathbb{R}^3 suivant : $F = \{(x, y, z) \in \mathbb{R}^3 | x 2y z = 0\}$.
- 2. Déterminer une bon de F par orthonormalisation de cette base. Si vous n'avez pas trouvé de base de deux vecteurs à la question 1, faites cette question et les suivantes à l'aide de la base suivante ((1,1,1),(1,2,3)) (qui n'est pas une base de F).
- 3. Déterminer l'expression de $p_F(x,y,z)$ où p_F est la projection orthogonale sur F et $(x,y,z) \in \mathbb{R}^3$.
- 4. Déterminer la distance du vecteur (1, 1, 1) à F.
- 5. Déterminer F^{\perp} . Expliquez sans effectuer de calcul comment on aurait pu trouver plus facilement p_F à l'aide de F^{\perp} .

4 Découverte

Notations .

- Dans tout le problème, n et m désignent des entiers naturels non nuls.
- On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées de taille $n \times n$ à coefficients réels et I_n la matrice identité dans $\mathcal{M}_n(\mathbb{R})$.
- On note A^{\top} la transposée d'une matrice A.
- Le produit scalaire canonique de \mathbb{R}^n et la norme euclidienne associée sont notés respectivement $\langle \cdot, \cdot \rangle$ et $\| \cdot \|$.
- Si E est un \mathbb{R} -espace vectoriel, on note $\mathcal{L}(E)$ l'ensemble des endomorphismes de E et $\mathcal{L}(E,\mathbb{R})$ l'ensemble des applications linéaires de E dans \mathbb{R} . On admet que si E est de dimension finie, alors $\dim(E) = \dim(\mathcal{L}(E,\mathbb{R}))$

4.1 Structure d'espace vectoriel symplectique réel

Soit E un \mathbb{R} -espace vectoriel de dimension finie n.

On appelle forme symplectique sur E toute application ω de E^2 dans $\mathbb R$ qui vérifie les trois propriétés suivantes :

— bilinéarité: $\forall (x, y, z) \in E^3, \forall \lambda \in \mathbb{R}, \omega(x + \lambda y, z) = \omega(x, z) + \lambda \omega(y, z)$ et $\omega(x, y + \lambda z) = \omega(x, y) + \lambda \omega(x, z)$;

- antisymétrie : $\forall (x,y) \in E^2, \omega(x,y) = -\omega(y,x)$;
- non dégénérescence : $\{x \in E \mid \forall y \in E, \omega(x, y) = 0\} = \{0_E\}.$

Un espace vectoriel symplectique réel (E, ω) est un \mathbb{R} -espace vectoriel de dimension finie E muni d'une forme symplectique ω sur E.

Q 1. En exploitant l'axiome d'antisymétrie, montrer que, si ω est une forme symplectique sur E, alors pour tout vecteur x de E, $\omega(x,x)=0$.

Pour tout sous-espace vectoriel F d'un espace symplectique (E,ω) , on appelle ω -orthogonal de F et on note F^{ω} l'ensemble

$$F^{\omega} = \{ x \in E \mid \forall y \in F, \omega(x, y) = 0 \}.$$

Soit F un sous-espace vectoriel d'un espace symplectique (E, ω) .

- **Q 2.** Justifier que F^{ω} est un sous-espace vectoriel de E.
- **Q 3.** Le sous-espace F^{ω} est-il nécessairement en somme directe avec F?
- **Q 4.** Expliquez pourquoi $\omega(x,\cdot)$ l'application de E dans $\mathbb{R},\ y\mapsto\omega(x,y)$ est une application linéaire.
- **Q 5.** Expliquez pourquoi si l'application $\omega(x,\cdot)$ (toujours la même qu'à la question 4) est l'application nulle, alors $x=0_E$.

On considère maintenant

$$d_{\omega}: E \to \mathcal{L}(E, \mathbb{R})$$
$$x \mapsto \omega(x, \cdot)$$

Q 6. Déduire de la question précédente que d_{ω} est un isomorphisme.

Pour $\ell \in \mathcal{L}(E, \mathbb{R})$, on note $\ell_{|F|}$ la restriction de ℓ à F définie par

$$\begin{array}{ccc} \ell_{|F}: F & \to & \mathbb{R} \\ x & \mapsto & l(x) \end{array}$$

Q 7. Montrer que l'application de restriction

$$r_F: \mathcal{L}(E, \mathbb{R}) \quad \to \quad \mathcal{L}(F, \mathbb{R})$$

$$\ell \quad \mapsto \quad \ell_{|F}$$

est surjective.

- **Q 8.** Préciser le noyau de $r_F \circ d_{\omega}$. En déduire que dim $F^{\omega} = \dim E \dim F$.
- **Q 9.** Montrer que la restriction ω_F de ω à F^2 définit une forme symplectique sur F si et seulement si $F \oplus F^{\omega} = E$.

4.2 Structure symplectique standard sur \mathbb{R}^n

On suppose qu'il existe une forme symplectique ω sur \mathbb{R}^n et on note $\Omega \in \mathcal{M}_n(\mathbb{R})$ la matrice définie par

$$\Omega = (\omega (e_i, e_j))_{1 \le i, j \le n}$$

où (e_1,\ldots,e_n) désigne la base canonique de \mathbb{R}^n .

Q 10. Montrer que

$$\forall (x,y) \in \mathbb{R}^n \times \mathbb{R}^n, \quad \omega(x,y) = X^{\top} \Omega Y$$

- où X et Y désignent les colonnes des coordonnées de x et y dans la base canonique de \mathbb{R}^n .
- **Q 11.** En déduire que Ω est antisymétrique et inversible. On rappelle que Ω est antisymétrique si sa transposée est $-\Omega$.
- **Q 12.** Conclure que l'entier n est pair.

Jusqu'à la fin du problème, on suppose que n est pair et on note $m \in \mathbb{N}^*$ l'entier naturel tel que n = 2m. On note $J \in \mathcal{M}_n(\mathbb{R})$ (= $\mathcal{M}_{2m}(\mathbb{R})$) la matrice définie par blocs par

$$J = \left(\begin{array}{cc} 0 & -I_m \\ I_m & 0 \end{array}\right)$$

et on note j l'endomorphisme de \mathbb{R}^n canoniquement associé à J.

Q 13. Montrer que l'application

$$b_s: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$
$$(x,y) \mapsto \langle x, j(y) \rangle$$

est une forme symplectique sur \mathbb{R}^n .

4.3 Endomorphisme symplectique réels

On appelle endomorphisme symplectique d'un espace vectoriel symplectique réel (E,ω) tout endomorphisme $u \in \mathcal{L}(E)$ tel que

$$\forall (x,y) \in E^2, \quad \omega(u(x),u(y)) = \omega(x,y)$$

On note $\operatorname{Symp}_{\omega}(E)$ l'ensemble des endomorphismes symplectiques de l'espace symplectique (E,ω) . Soit $u\in\operatorname{Symp}_{\omega}(E)$ un endomorphisme symplectique de E.

Soient λ, μ des valeurs propres réelles de u, et soient $E_{\lambda}(u), E_{\mu}(u)$ les sous-espaces propres associés.

Q 14. Montrer que, si $\lambda \mu \neq 1$, alors les sous-espaces $E_{\lambda}(u)$ et $E_{\mu}(u)$ sont ω -orthogonaux, c'est-à-dire :

$$\forall x \in E_{\lambda}(u), \quad \forall y \in E_{\mu}(u), \quad \omega(x,y) = 0.$$