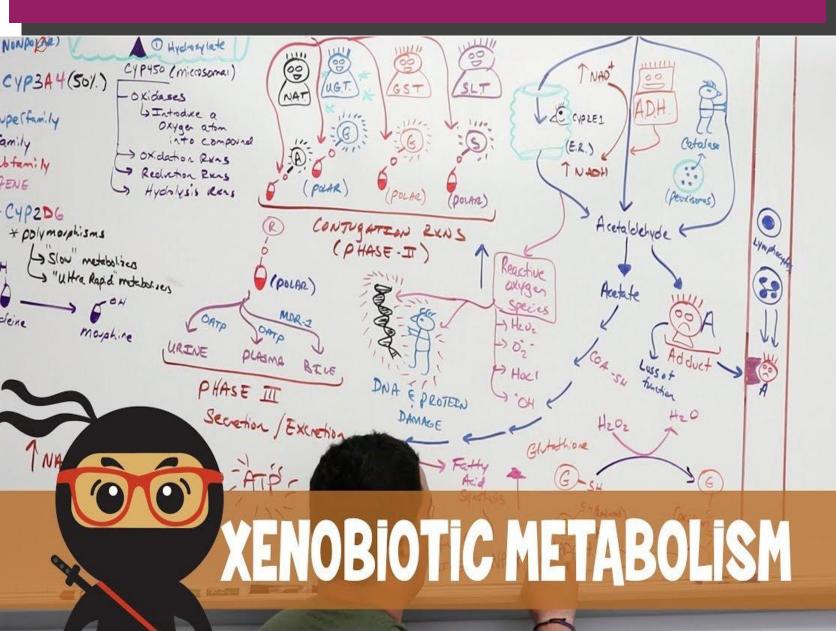


FACULTÉ DE PHARMACIE

Biostransformation of xenobiotics general principles


Tuesday, January 28th 2025

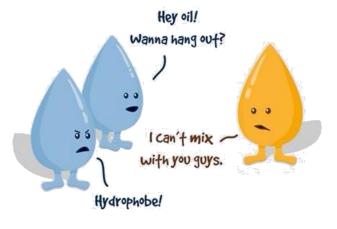
Kévin HARDONNIÈRE

M1D2HP_TU11_2024-2025

Definition

Xénobiotic

The "xeno" in "xenobiotics" comes from the Greek word *xenos* meaning guest, friend, or foreigner.


Molecule of foreign origin to an organism, present exceptionally in the organism and which is neither a substrate, nor a usual product of metabolic reactions.

These low molecular weight molecules are very varied in nature; they include, for example, food contaminants, synthetic compounds or their by-products, drugs and environmental pollutants.

Properties of xenobiotics

- ✓ These compounds are rather lipophilic;
- ✓ Passage of membres per diffusion;
- ✓ Carried by **lipoproteins** in the blood.

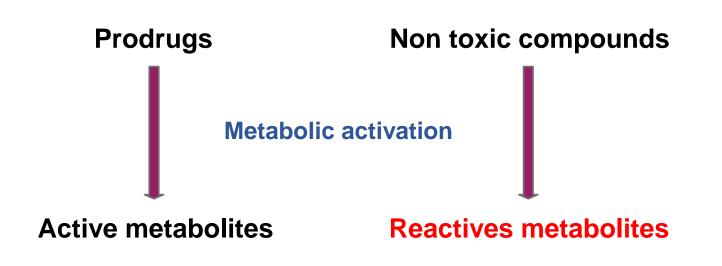
science fried art. 2013.

A chemical transformation is required to allow their elimination !

✓ The term "biotransformation" refer to the chemical modifications that these molecules will encounter within the body to generate some new metabolites.

✓ Biotransformations are mainly carried out by **enzymatic reactions**.

✓ The main function of biotransformations is therefore to make lipophilic molecules water-soluble in order to promote their elimination from the body.

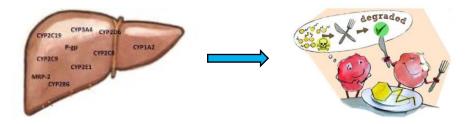

Metabolic inactivation

UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

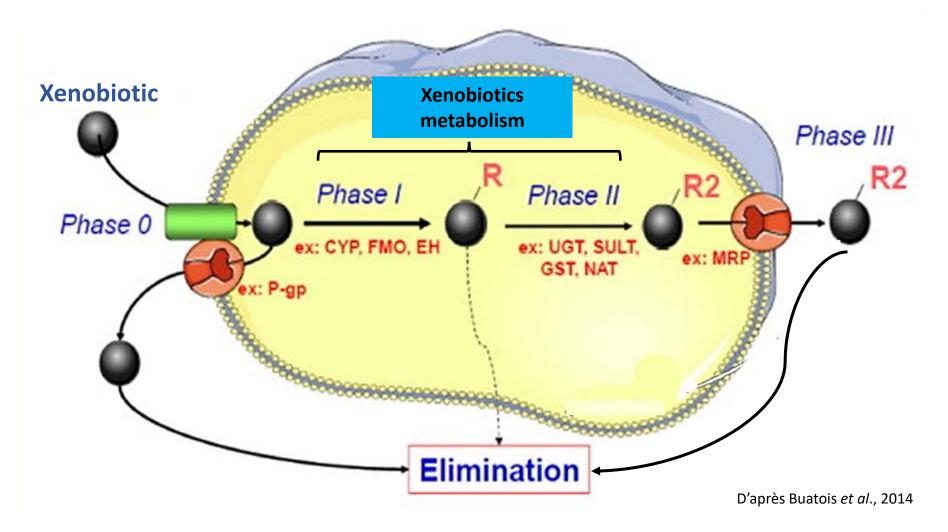
Metabolic activation

UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

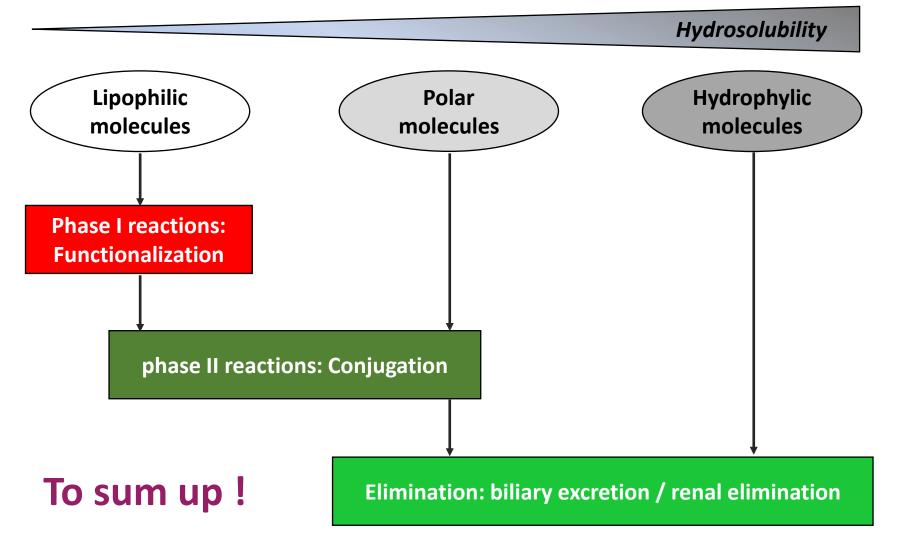
 Metabolism of xenobiotics most of the time helps to protect the body upon exposure;


✓ It is therefore essential to allow the **elimination of toxic molecules**;

The process is divided in 2 steps in order to transform the xenobiotic into a more hydrophilic metabolite, thus facilitating its body elimination;


The liver is a key organ in the metabolism of drugs and xenobiotics

- ✓ In addition to its metabolic capacity, the liver is also involved in the excretion of drugs from the body through the biliary system. After excretion in the bile, the drug ends up in the intestinal lumen where it can be reabsorbed: this is the enterohepatic cycle.
- The xenobiotics absorbed at the intestinal level will be preferentially processed in the liver before entering the general circulation (first-pass effect, enterohepatic cycle) but also in the kidneys, the digestive tract, the lungs, the skin...etc.



Overview at the cellular level...

UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

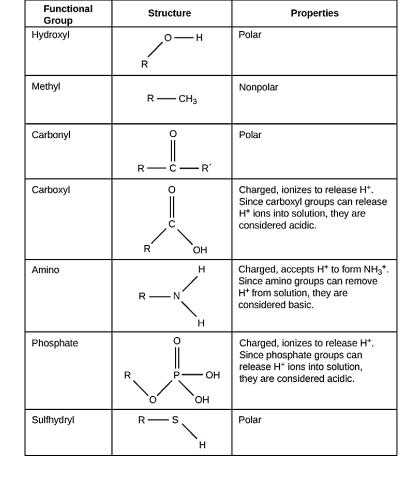
Sequential processing of xenobiotics according to their physicochemical properties

FACULTÉ DE PHARMACIE

Phase I reactions

Fonctionnalisation : Phase I

UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE


Creation of a functional group -OH, -NH₂, -COOH, -SH

Oxidations +O₂ -H⁺

Reductions

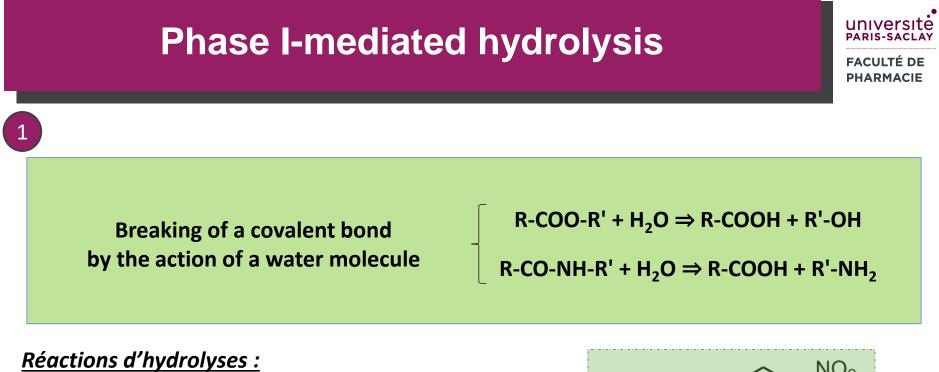
+H+

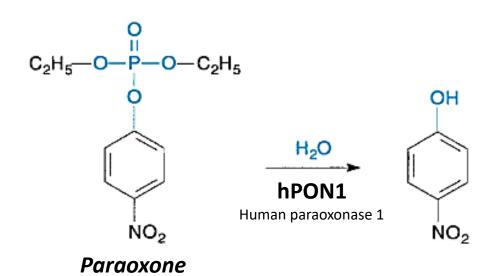
-O₂

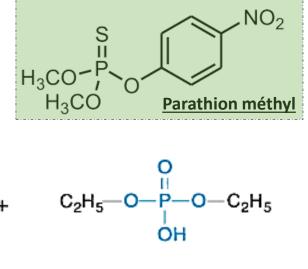
Hydrolysis

```
+ H<sub>2</sub>O
Covalent bond disruption
```

Hydratations

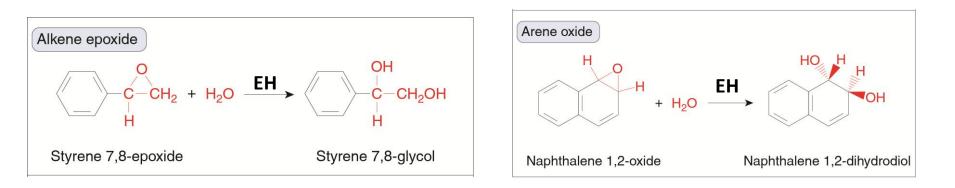

 $+ H_2O$


Electrophilic addition of a molecule of water to an organic compound


General pathways and their major cellular location

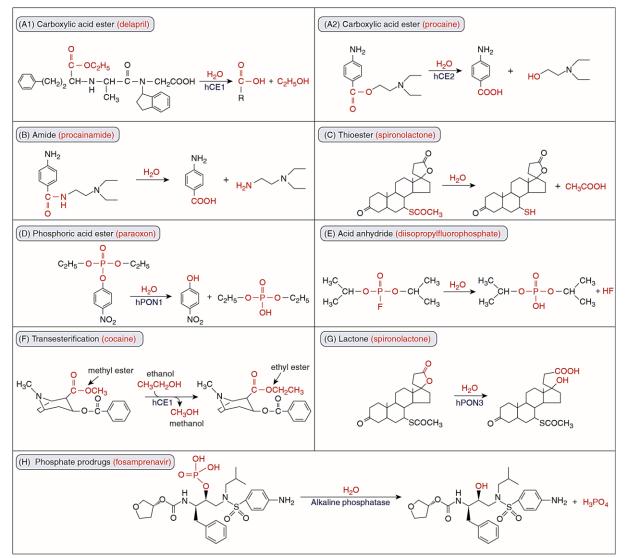
UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

REACTION	ENZYME	LOCALIZATION			
	Phase	21			
Hydrolysis	Esterase	Microsomes, cytosol, lysosomes, blood			
	Peptidase	Blood, lysosomes			
	Epoxide hydrolase	Microsomes, cytosol			
Reduction	Azo- and nitro-reduction	Microflora, microsomes, cytosol			
	Carbonyl reduction	Cytosol, blood, microsomes			
	Disulfide reduction	Cytosol			
	Sulfoxide reduction	Cytosol			
	Quinone reduction	Cytosol, microsomes			
	Reductive dehalogenation	Microsomes			
Oxidation	Alcohol dehydrogenase	Cytosol			
	Aldehyde dehydrogenase	Mitochondria, cytosol			
	Aldehyde oxidase	Cytosol			
	Xanthine oxidase	Cytosol			
	Monoamine oxidase	Mitochondria			
	Diamine oxidase	Cytosol			
	Prostaglandin H synthase	Microsomes			
	Flavin-monooxygenases	Microsomes			
	Cytochrome P450	Microsomes			



Epoxide Hydrolase (EH)

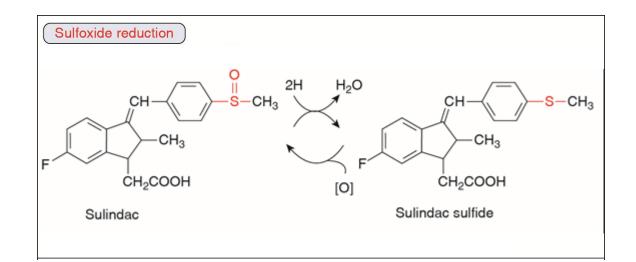
- ✓ 5 isoformes in human;
- ✓ Microsomal and cytoplasmic enzymes;
- Conversion of epoxy groups into dihydrothiol groups;
- ✓ Detoxification of molecules with reactive epoxy groups capable of forming adducts (covalent bonds) on proteins and nucleic acids.


Examples of phases I hydrolysis reactions

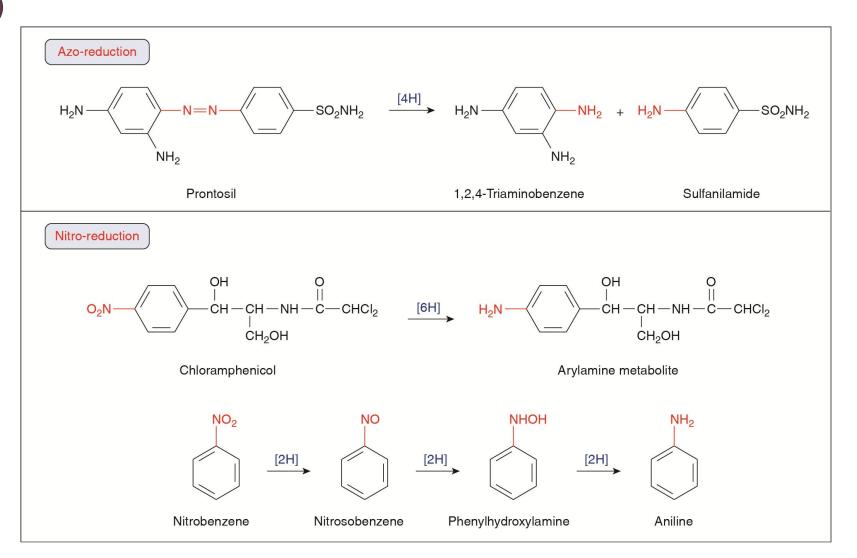
PARIS-SACLAY FACULTÉ DE PHARMACIE

univei

Carboxylesterases, cholinesterases and organophosphatases


Phase I reduction reaction

2


Adding a proton or removing an oxygen atom

R-OH ⇒ R-H (Dehydroxylation) R-C=O ⇒ R-C-OH (Hydrogenation) R-COOH ⇒ R-C=O (Decarboxylation) R-NO₂⇒ R-NH₂ (Amination) R-C-H ⇒ R-CH₃ (Methylation)

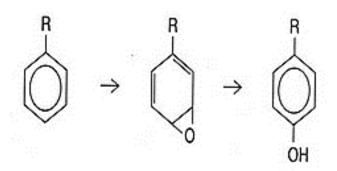
Others examples of phase I reductions

2

FACULTÉ DE PHARMACIE

Phase I oxidations

3

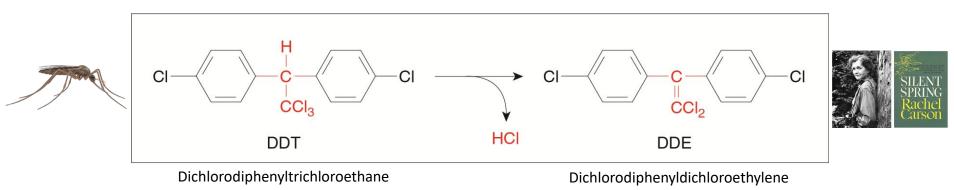

Addition of an oxygen molecule or loss of a proton

R-H ⇒ R-OH (Hydroxylation) R-C-OH ⇒ R-C=O (Dehydrogenation) R-C=O ⇒ R-COOH (Carboxylation) R-C-NH₂⇒R-C=O (Deamination) R-CH₃⇒ R-H (Demethylation)

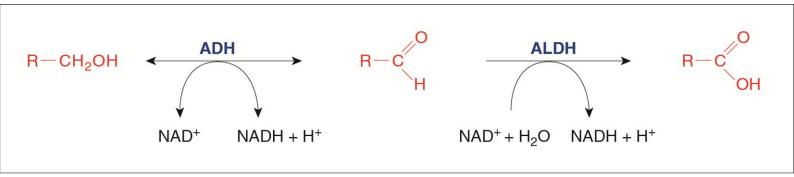
Aliphatic oxidation

 $\begin{array}{c} [O] \\ R-CH_2-CH3 \rightarrow R-CH-CH_3 \\ & | \\ OH \end{array}$

Oxydations aromatiques

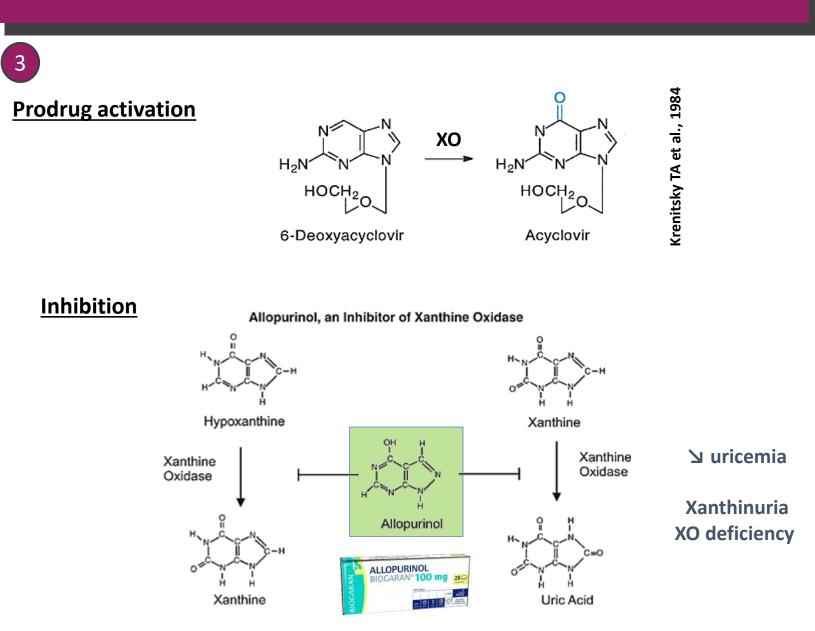


These are the most common Phase I reactions


Examples of phase I oxidations

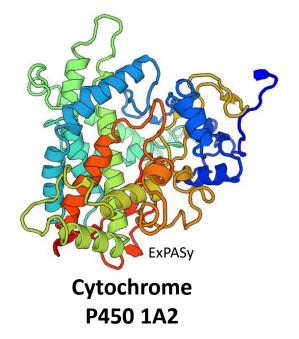
Dehydrochlorination of the pesticide DDT to DDE

FACULTÉ DE PHARMACIE

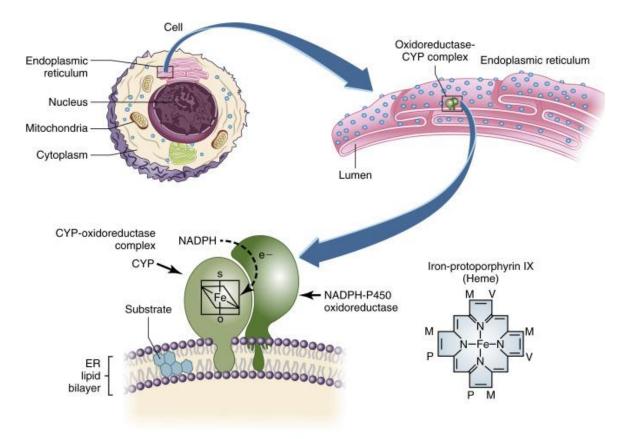

Oxidation of alcohols to aldehydes and carboxylic acid

ADH = alcool dehydrogenase / ALDH = aldehyde deshydrogenase

3

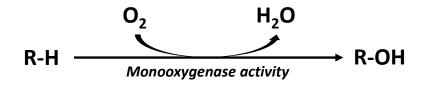

Xanthines Oxidases (XO)

P450 cytochromes



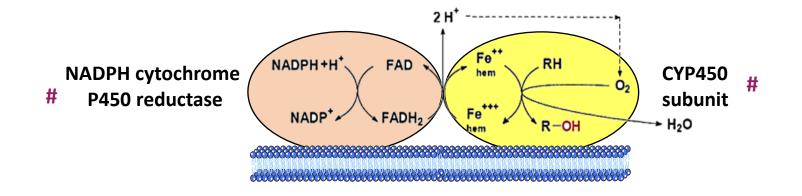
- Pigment 450 = maximal absorption at 450 nm;
- ✓ Activité monooxygenase activity ;
- ✓ CYP450 catalyzes oxidation using oxygen and NADPH (reduced nicotinamide).

P450 localization


UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

Localization in the membranes of the smooth ER of hepatocytes (Some CYPs are also localized to mitochondria);

P450 monooxygenase activity



Three essential elements:

1°) Electron donors → NADPH, NADH

2°) Electron transport chain #

3°) Phospholipids

$RH + O_2 + NADPH + H^+ \rightarrow ROH + H_2O + NADP^+$

Pentoses phosphates pathway, malic enzyme...etc.

Nomenclature

	Codification	Example : CYP1A2
Cytochrome P450	СҮР	СҮР
Family	Number	1
Sub-family	Capital letter	Α
Isoenzyme	Number	2

✓ ≈ 481 genes : 107 in human/ 57 characterized enzymes;

✓ Mainly expressed in the liver in mammals;

P450 substrates

XENOBIOTICS		FATTY ACIDS/ EICOSANOIDS	STEROIDOGENIC	BILE ACIDS	VITAMIN D	RETINOIC ACID	UNKNOWN
CYP1A1	CYP2F1	CYP2U1	CYP11A1	CYP7A1	CYP2R1	CYP26A1	CYP4A22
CYP1A2	CYP2J2 ^{*,†}	CYP4A11	CYP11B1	CYP7B1	CYP24A1	CYP26B1	CYP4X1
CYP1B1	CYP2S1	CYP4F2 ^{‡,§}	CYP11B2	CYP8B1	CYP26C1**		CYP20A1
CYP2A6	CYP2W1	CYP4F3 [§]	CYP17A1	CYP27A1 [†]	CYP27B1		CYP27C1
CYP2A13	CYP3A4 ^{†,††}	CYP4F8	CYP19A1	CYP39A1			
CYP2B6	CYP3A5	CYP4F11	CYP21A2	CYP46A1			
CYP2C8*	CYP3A7	CYP4F12 [§]		CYP51A1#			
CYP2C9*	CYP3A43	CYP4F22					
CYP2C18		CYP4V2					
CYP2C19		CYP4Z1					
CYP2D6		CYP5A1 ^{§§}					
CYP2E1		CYP8A1***					

Note: CYP2A7 and 4B1 are full-length genes that probably encode inactive enzymes due to lack of heme incorporation.

*Also involved in fatty acid and eicosanoid metabolism.

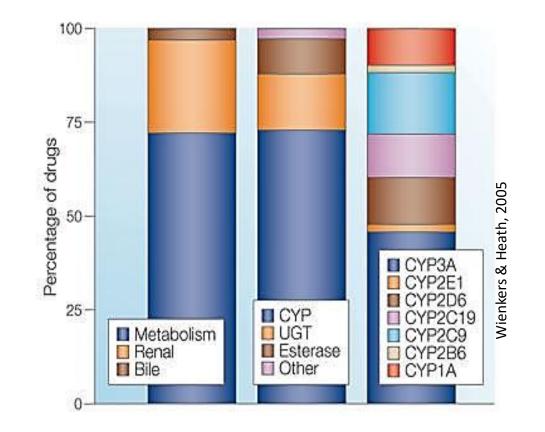
[†]Also involved in vitamin D metabolism.

[‡]Also involved in vitamin E and vitamin K metabolism.

[§]Also involved in xenobiotic metabolism.

**Also involved in retinoic acid metabolism.

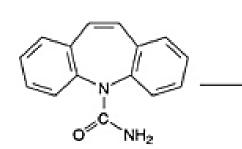
^{††}Also involved in bile acid synthesis.

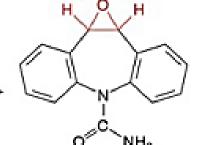

^{‡‡}Also involved in cholesterol biosynthesis.

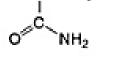
^{§§}Thromboxane A synthase (TBXAS1).

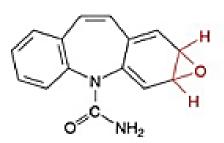
*** Prostaglandin I₂ (prostacyclin) synthase (PTGIS).

Importance of P450 in drug metabolism

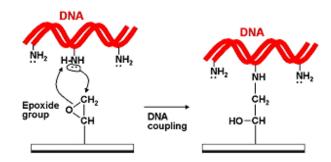

UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE




Elimination of the 200 most prescribed drugs


CYP P450 : epoxidation reactions

univer PARIS-SAC FACULTÉ DE PHARMACIE

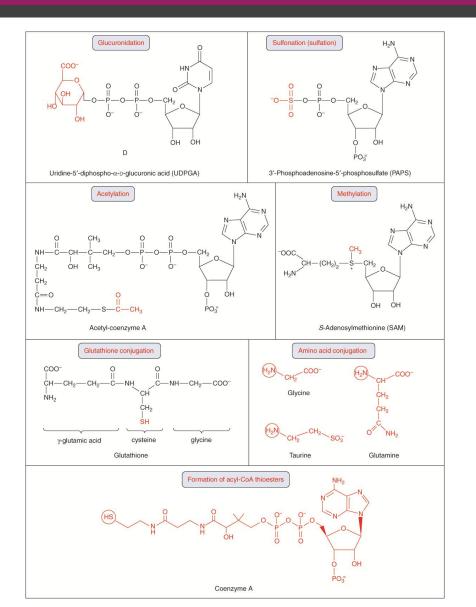


Carbamazepine

Carbamazepine-10,11-epoxide (stable epoxide)

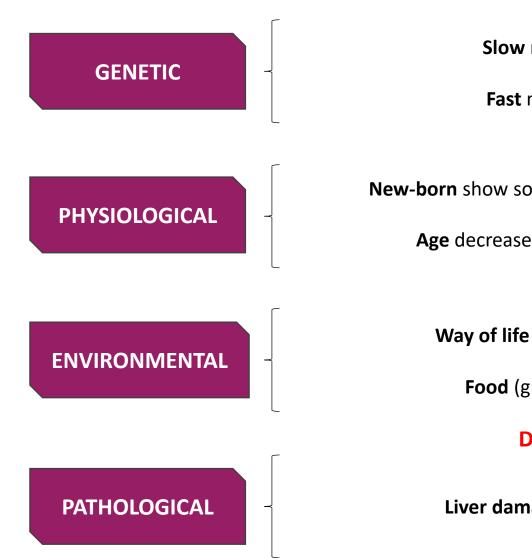
Carbamazepine-2,3-epoxide (unstable arene oxide)

Generate reactive metabolites!


Phase II reactions

Phase II reactions

UNIVERSITÉ PARIS-SACLAY FACULTÉ DE PHARMACIE


Type of Conjugation	Endogenous Reactant	Transferase (Location)	Types of Substrates	Examples			
Glucuronidation	UDP glucuronic acid	UDP glucuronosyltrans- ferase (microsomes)	Phenols, alcohols, carboxylic acids, hydroxylamines, sulfonamides	Nitrophenol, morphine, acetaminophen, diazepam, N-hydroxydapsone, sulfathi- azole, meprobamate, digitoxin, digoxin			
Acetylation	Acetyl-CoA	N-Acetyltransferase (cytosol)	Amines	Sulfonamides, isoniazid, clon- azepam, dapsone, mescaline			
Glutathione conjugation	Glutathione (GSH)	GSH-S-transferase (cytosol, microsomes)	Epoxides, arene oxides, nitro groups, hydroxylamines	Acetaminophen, ethacrynic acid, bromobenzene			
Glycine conjugation	Glycine	Acyl-CoA glycinetrans- ferase (mitochondria)	Acyl-CoA derivatives of carboxylic acids	Salicylic acid, benzoic acid, nicotinic acid, cinnamic acid, cholic acid, deoxycholic acid			
Sulfation	Phosphoadenosyl phosphosulfate	Sulfotransferase (cytosol)	Phenols, alcohols, aromatic amines	Estrone, aniline, phenol, 3- hydroxycoumarin, acetamin- ophen, methyldopa			
Methylation	S-Adenosylmethionine	Transmethylases (cytosol)	Catecholamines, phenols, amines	Dopamine, epinephrine, pyridine, histamine, thiouracil			
Water conjugation	Water	Epoxide hydrolase (microsomes)	Arene oxides, <i>cis</i> -disubstituted and monosubstituted oxiranes	Benzopyrene 7,8-epoxide, styrene 1,2-oxide, carbam- azepine epoxide			
		(cytosol)	Alkene oxides, fatty acid epoxides	Leukotriene A ₄			

Structures of cofactors for phase II biotransformation

Factors influencing drug metabolism

What are these factors?

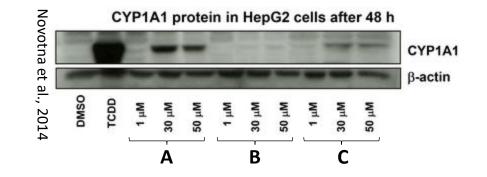
FACULTÉ DE PHARMACIE

Slow metabolizers vs. Fast metabolizers

New-born show some enzymatic immaturity

Age decreases metabolic capacity

Way of life (alcohol, tobacco)

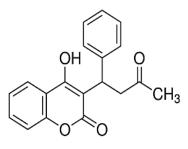

Food (grapefruit juice)

Drugs !!!

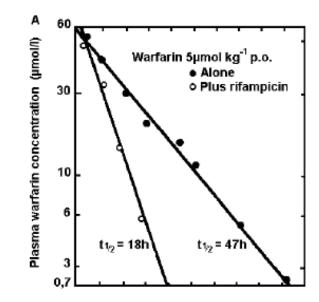
Liver damages (NASH...etc.)

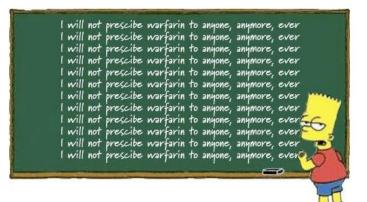
Inducibility of metabolism

Exposure to a xenobiotic is generally responsible for the induction of an enzymatic system capable of supporting this molecule;

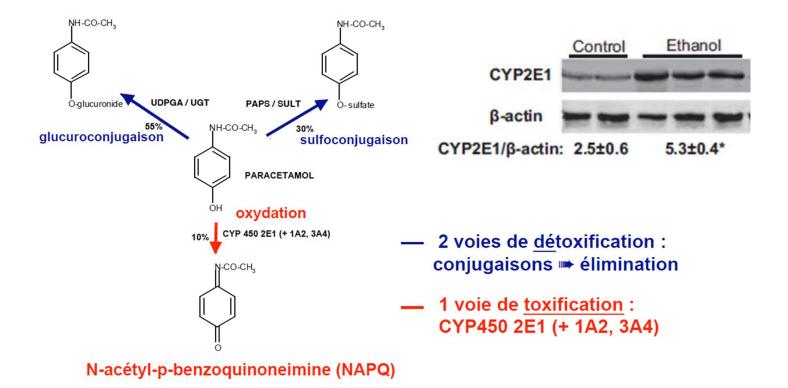

- Response to toxicants is adaptative: cells and tissues will produce the enzymatic machinery to metabolize and eliminate a molecule only if this molecule has been detected;
- ✓ Although generally beneficial to the body, the metabolism of xenobiotics can sometimes paradoxically be the cause of exacerbated toxicity by generating molecules or metabolites that are more toxic than the native molecule.

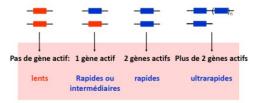
FACULTÉ DE

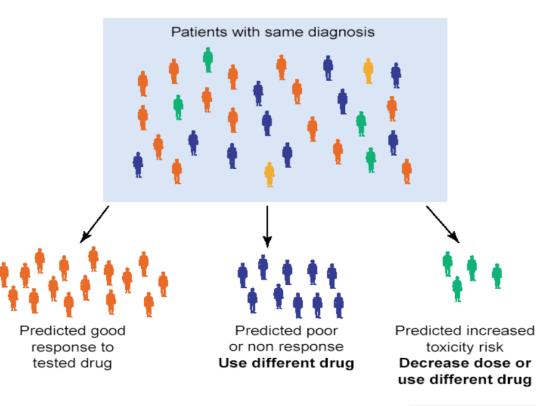

Metabolic interactions : drugs examples


UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE

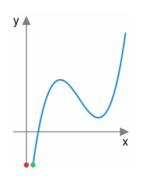
CYP2C9

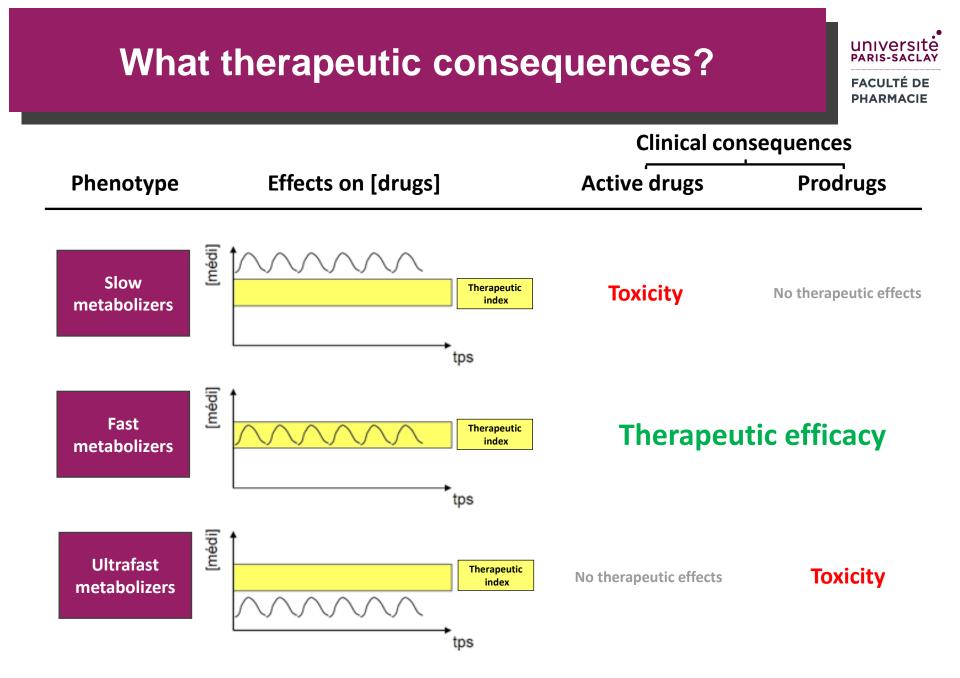

Warfarine


Acetaminophen/P4502E1



Consequences of CYP polymorphism


UNIVERSITE PARIS-SACLAY FACULTÉ DE PHARMACIE



Molecular basis of CYP polymorphism

TRENDS in Genetics

What you need to know!

Metabolism is one of the key elements of drug activity and toxicity

- 3 phases in general but the scheme can vary
- Effet de 1er passage hépatique
- Pro-drugs
- Many enzymes are capable of metabolising drugs
 - Major role of CYP450
- These enzymes are subject to inhibition and induction = drug interactions
- There is genetic polymorphism in the metabolizing enzymes
- The toxicity of a molecule may exist after metabolization
 - Bioactivation

FACULTÉ DE

Liste inducteurs/inhibiteurs P450/Pgp

PARIS-SACLAY FACULTÉ DE PHARMACIE

Document available on eCAMPUS

Interactions médicamenteuses, cytochromes P450 et P-glycoprotéine (Pgp)

Substrats de	s cy	toc	hro	me	s P4 9	50 et de la Pgp							Ma	ijeure 📕 Mineure ! Métabolite ac
	1A2 2B6	508	2019	2D6 2F1	3A4/5 Pap		1A2	286	2C8	2019	2D6	2E1 3A4/5	gg	142 142 208 209 209 2019 2019 2019 2019 2019 2019 2
acénocoumarol				_		étravirine								paroxétine
acide méfénamique				-		everolimus		\rightarrow			-	-		phénobarbital
acide valproïque						felbamate		-						phenprocoumone
agomelatine						félodipine		-						phénytoïne
alfentanil						fentanyl		-			-			pioglitazone
alprazolam						fexofénadine		-			-			piroxicam
amiodarone						finastéride		-			-		С.	posaconazole
amitriptyline				!	1	flécaïnide		\neg			1		H.	prasugrel
amlodipine						fluoxétine		+			Ť.			prednisolone
pixaban		+++		-		flurbiprofène		-					H.	primidone
aripiprazole		++				fluvastatine		-			-			proguanil
artéméther						fluvoxamine		\rightarrow						prométhazine
tazanavir				-		galantamine		-						propafénone
atomoxétine						géfitinib		\rightarrow						propofol
atorvastatine		++				gestodène		-						propranolol
pisoprolol	++-	++				glibenclamide		\rightarrow			-			quétiapine
oceprevir						glicazide		\rightarrow			-			quinidine
ortézomib		++				glimépiride		-			-	+	H.	quinine
osentan						granisétron		-			-			ranitidine
promocriptine						grazoprévir		-			-			rabéprazole
uprénorphine		+++		-		halopéridol		-						réboxétine
upropion				-		hydrocodone		+	-	\square	1			répaglinide
upropion aféine						ibuprofène		+					H.	rifabutine
annabidiol		++				ifosfamide		1			+	1		rilpivirine
arbamazépine						imatinib								rispéridone
arvédilol				1		imipramine		+						ritonavir
élécoxib						indinavir		+	-					rivaroxaban
eliprolol						irbésartan		+						saguinavir
hlorphéniramine		++				isradipine	\square	+			+			saxagliptine
iclosporine		++				itraconazole		\rightarrow	-	\square	-			sertraline
citalopram		++				kétoconazole		+		\square	+			sildénafil
clarithromycine		++				lansoprazole	+	+	-		+			simeprevir