TD: Suites de fonctions

Le symbole * désigne approximativement le niveau de profondeur et/ou de difficulté

1 Les classiques

Exercice 1 ().

Démontrer que les suites de fonctions suivantes converges simplement et uniformément sur l'intervalle donné :

- 1. $f_n(x) = \sqrt{x + 1/n} \operatorname{sur} \mathbb{R}_+$
- 2. $f_n(x) = \arctan(nx)/n \operatorname{sur} \mathbb{R}$
- 3. $f_n(x) = \ln(x + \frac{1}{n}) \text{ sur } [1, +\infty[$
- 4. $f_n(x) = \sin(n)/nx \operatorname{sur} [a, +\infty[\operatorname{avec} a > 0$

Exercice 2 ().

Étudier la convergence simple, puis uniforme, des suites de fonctions suivantes sur l'intervalle donné :

- 1. $f_n: x \mapsto ne^{-n^2x^2} \text{ sur }]0, +\infty[$
- 2. $f_n(x) = \arctan(nx) \operatorname{sur} \mathbb{R}$.
- 3. $f_n(x) = \sin(n)/nx \text{ sur }]0, +\infty[$
- 4. $f_n(x) = \ln(x + \frac{1}{n}) \text{ sur }]0, +\infty[$

Exercice 3 (*).

Étudier la convergence simple et la convergence uniforme des suites de fonctions (f_n) suivantes sur l'intervalle donné :

- 1. $\sqrt{n}xe^{-nx}$ sur \mathbb{R}_+
- 2. n^2xe^{-nx} sur \mathbb{R}_+ puis sur $[a, +\infty[$ avec a > 0.
- 3. $f_n(x) = e^{-nx} \sin(2nx) \text{ sur } \mathbb{R}^+ \text{ puis sur } [a, +\infty[, \text{ avec } a > 0.$
- 4. $f_n(x) = \frac{1}{(1+x^2)^n}$ sur \mathbb{R} , puis sur $[a, +\infty[$ avec a > 0.

Exercice 4 $(\star\star)$.

Étudier la convergence simple et la convergence uniforme des suites de fonctions (f_n) suivantes :

- 1. $f_n(x) = \frac{\sin nx}{n\sqrt{x}} \operatorname{sur} \mathbb{R}_+^*;$
- 2. $f_n(x) = (\sin x)^n \cos(x) \operatorname{sur} \mathbb{R}$.

Exercice 5 (). Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie sur [0,1] par $f_n(x)=n^2x(1-nx)$ si $x\in [0,1/n]$ et $f_n(x)=0$ sinon.

- 1. Étudier la limite simple de la suite (f_n) .
- 2. Calculer $\int_0^1 f_n(t)dt$ et $\int_0^1 f(t)dt$

- 3. Y-a-t-il convergence uniforme sur [0,1]?
- 4. Étudier la convergence uniforme sur [a, 1] pour $a \in]0, 1]$.

Exercice 6 ().

Soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$. Démontrer que chaque f_n est de classe \mathcal{C}^1 sur \mathbb{R} et que la suite de fonctions (f_n) converge uniformément vers une fonction f. f est-elle \mathcal{C}^1 sur \mathbb{R} ?

Exercice 7 (*).

Soit (f_n) une suite de fonctions décroissantes définies sur [0,1] telle que (f_n) converge simplement vers la fonction nulle. Montrer que la convergence est en fait uniforme.

Exercice 8 $(\star\star)$.

Soient (f_n) et (g_n) deux suites de fonctions définies sur un même intervalle I et à valeurs dans \mathbb{R} . On suppose que (f_n) et (g_n) convergent uniformément sur I vers respectivement f et g. On suppose de plus que f et g sont bornées. Démontrer que (f_ng_n) converge uniformément vers fg.

2 Problème

Exercice 9 (* * *). Approximation polynomiale de la racine carrée

On définit une suite de fonctions $f_n:[0,1]\to\mathbb{R}$ par $f_0=0$ et, pour tout $n\in\mathbb{N}$ et tout $x\in I=[0,1],$

$$f_{n+1}(x) = f_n(x) + \frac{1}{2} (x - (f_n(x))^2).$$

1. Déterminer la fonction φ telle que pour tout $x \in I$,

$$f_{n+1}(x) = \varphi(f_n(x))$$

- 2. Soit $x \in I$. Démontrer que la suite $(f_n(x))$ est croissante et majorée (on pourra étudier la fonction φ et raisonner par récurrence)
- 3. En déduire que la suite (f_n) converge simplement sur I vers la fonction $x \mapsto \sqrt{x}$.
- 4. Démontrer que, pour tout entier $n \geq 1$,

$$0 \le \sqrt{x} - f_n(x) \le \sqrt{x} \left(1 - \frac{\sqrt{x}}{2} \right)^n.$$

- 5. Déterminer le maximum de la fonction $t \mapsto t(1-\frac{t}{2})^n$ sur [0,1].
- 6. En déduire que la convergence est uniforme sur I.
- 7. Justifier le nom d'approximation polynomiale concernant la convergence uniforme de (f_n) vers la racine carrée.