TD : Séries de fonctions

Le symbole * désigne approximativement le niveau de profondeur et/ou de difficulté

1 Les classiques

Exercice 1 ().

Soit pour tout $n \in \mathbb{N}$,

$$f_n: x \mapsto x^n$$

Rappeler l'intervalle de convergence simple de $\sum f_n$ et la valeur de la somme.

Exercice 2 ().

Expliquer pourquoi les phrases suivantes ne sont pas satisfaisantes :

- 1. "La série de fonctions $\sum f_n$ converge simplement."
- 2. "La série de fonctions $\sum f_n(x)$ converge simplement sur I. "
- 3. "La série $\sum \frac{1}{n^2}$ converge simplement".

Exercice 3 ().

Démontrer que les séries des fonctions ci-dessous convergent simplement sur l'intervalle donné :

1. La série $\sum h_n$ sur \mathbb{R} avec

$$h_n: x \mapsto \frac{2\cos(nx)}{n^2 + x^4}$$
, pour tout entier $n \in \mathbb{N}$

2. La série $\sum f_n$ sur \mathbb{R}_+^{\star} avec

$$f_n: x \mapsto \frac{(-1)^n}{nx}$$
, pour tout entier $n \ge 1$

3. La série $\sum g_n$ sur \mathbb{R} avec

$$g_n(x) = \frac{(-1)^n}{n+x^2}, \quad n \ge 1$$

4. La série $\sum u_n \operatorname{sur} \mathbb{R}^+$ avec

$$u_n(x) = \frac{xe^{-nx}}{\ln(n)}, \quad n \ge 1$$

Exercice 4 ().

Déterminer l'intervalle de convergence simple de $\sum f_n$ où

$$f_n: x \mapsto \sqrt{n}x^n$$

Exercice 5 ().

On considère les séries de fonctions données dans l'exercice 3.

- 1. Démontrer que $\sum h_n$ converge uniformément sur \mathbb{R} .
- 2. Démontrer que $\sum f_n$ ne converge pas uniformément sur $]0, +\infty[$, mais converge uniformément sur tout intervalle $[a, +\infty[$ avec a > 0.
- 3. Démontrer que $\sum u_n$ converge uniformément sur \mathbb{R}^+ .

Exercice 6 ().

Pour tout entier $n \in \mathbb{N}$, soit

$$f_n: z \mapsto \frac{z^n}{n!}$$

Montrer que pour tout a > 0, $\sum f_n$ converge normalement sur le disque de centre 0 et de rayon a $\overline{D(0,a)} = \{z \in \mathbb{C}, |z| \leq a\}.$

Exercice 7 ().

On pose pour tout entier $n \geq 1$,

$$f_n: x \mapsto \ln(n)(2x)^n$$

- 1. Démontrer que $\sum f_n$ ne converge pas normalement sur [0,1/2]
- 2. Démontrer que $\sum f_n$ converge normalement sur tout segment de la forme [0,a] avec $0 < a < \frac{1}{2}$

Exercice 8 (*). Étudier la convergence simple, uniforme et normale de la série des fonctions

$$f_n(x) = \frac{(-1)^n}{n+x^2}, \quad n \ge 1, x \in \mathbb{R}$$

Exercice 9 (\star) .

Soit

$$f_n: x \mapsto \frac{e^{-nx}}{2n+n^5}$$

pour tout entier $n \geq 1$

Étudier la convergence simple, uniforme et normale de $\sum f_n$ sur $[0, +\infty[$.

Exercice 10 (\star) .

Pour tout entier $n \geq 1$, soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \frac{\sin(nx)}{n^3}$$

Étudier la convergence simple, normale de $\sum f_n$ sur \mathbb{R} .

Exercice 11 $(\star\star)$.

Pour $x \ge 0$, on pose

$$u_n(x) = \frac{x}{n^2 + x^2}$$

- 1. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n=1}^{+\infty} u_n$ converge uniformément sur tout intervalle [0, A], avec A > 0.
- 3. Vérifier que, pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=n+1}^{2n} \frac{n}{n^2 + k^2} \ge \frac{1}{5}$$

4. En déduire que la série $\sum_{n>1} u_n$ ne converge pas uniformément sur \mathbb{R}_+ .

Exercice 12 $(\star\star)$.

Pour $n \geq 1$ et $x \in \mathbb{R}$, on pose

$$u_n(x) = nx^2 e^{-x\sqrt{n}}$$

- 1. Démontrer que la série $\sum_n u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Démontrer que la convergence n'est pas normale sur \mathbb{R}_+ .
- 3. Démontrer que la convergence est normale sur tout intervalle $[a, +\infty[$ avec a > 0.
- 4. La convergence est-elle uniforme sur \mathbb{R}_+ ?

Exercice 13 $(\star\star)$.

Soit

$$u_n(x) = (-1)^n \ln\left(1 + \frac{x}{n(1+x)}\right)$$

définie pour $x \ge 0$ et $n \ge 1$

- 1. Montrer que la série $\sum_{n>1} u_n$ converge simplement sur \mathbb{R}_+ .
- 2. Montrer que la série $\sum_{n\geq 1} u_n$ converge uniformément sur \mathbb{R}_+ .
- 3. La convergence est-elle normale sur \mathbb{R}_+ ?

Exercice 14 ().

Soit pour tout entier $n \geq 1$,

$$f_n: x \mapsto \frac{e^{inx}}{n^2}$$

Démontrer que la série de fonctions $\sum_{n=1}^{+\infty} f_n$ est continue sur \mathbb{R} .

Exercice 15 (\star) .

Soit $f_n: x \mapsto x^n$.

- 1. Démontrer sans utiliser son expression que $\sum_{n=0}^{+\infty} f_n$ est continue sur] -1,1[
- 2. Rappeler ensuite l'expression de $\sum_{n=0}^{+\infty} f_n(x)$ et dites sur quel intervalle la fonction associée est continue
- 3. En étudiant la limite lorsque $x \to -1$, peut-on alors dire que :

$$\sum_{n=0}^{+\infty} (-1)^n = \frac{1}{2} \quad ?$$

Exercice 16 (\star) .

Démontrez que

$$\int_0^1 \sum_{n=1}^{+\infty} \frac{n^2 - x^2}{(n^2 + x^2)^2} dx = \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

Exercice 17 (\star) .

Étudier sur quel intervalle la fonction suivante est

- 1. Définie
- 2. Continue
- 3. C^1

$$x \mapsto \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin\left(\frac{x}{n}\right)$$

Exercice 18 $(\star \star \star)$.

Étudier sur quel intervalle la fonction suivante est

- 1. Définie
- 2. Continue
- 3. C^1

$$S: x \mapsto \sum_{n=1}^{+\infty} \frac{x}{n(1+n^2x^2)}$$

2 Problème

Exercice 19 (). Fonction zeta de Riemann

On appelle fonction ζ de Riemann la fonction de la variable $s\in\mathbb{R}$ définie par la formule

$$\zeta(s) = \sum_{n \geq 1} \frac{1}{n^s}$$

- 1. Donner le domaine de définition de ζ et démontrer qu'elle est strictement décroissante sur celui-ci
- 2. Prouver que ζ est continue sur son domaine de définition.
- 3. Déterminer $\lim_{s\to+\infty} \zeta(s)$.
- 4. Montrer que pour tout entier $k \ge 1$ et tout s > 0, on a

$$\frac{1}{(k+1)^s} \le \int_k^{k+1} \frac{dx}{x^s} \le \frac{1}{k^s}$$

- 5. En déduire que $\zeta(s) \sim_{1^+} \frac{1}{s-1}$.
- 6. Démontrer que ζ est convexe.