

Host-pathogen interaction: innate immunity

Pr Imad KANSAU Equipe Bactéries Pathogènes et Santé

Main mechanisms of manipulation of the immune system

Innate immunity and recognition of non-self

In bacteria:

PAMPs :

- Lipopolysaccharide (LPS)
- Peptidoglycane
- Lipopeptide
- Lipoarabinomannanes
- Flagellines
- ADN C+G

PAMPs: Pathogen Associated Molecular Patterns **DAMPs**: damage-associated molecular patterns **HAMPs**: homeostasis-altering molecular processes

In the host:

PRR : *Pattern Recognition Receptors*

Récepteurs non opsonisants qui reconnaissent les PAMPS :

- Scavenger Receptors (SR)
- C-type lectin receptors (CLRs)
- Toll like receptors (TLR)
- Nucleotide-binding domain and leucine-rich repeat receptors (NLR) or NOD-like receptors
- retinoic acid-inducible gene (RIG) I-like receptors (RLRs)
- DNA sensors

Pathogen-associated molecular patterns (PAMP) on the bacterial surface

Inflammatory Mechanisms

CLRs: Myeloid C-type lectin receptors

Expressed by APCs

ITAM: immunoreceptor tyrosine-based activating motif

ITIM: immunoreceptor tyrosine-based inhibitory motif

Toll-like receptors (TLR) and host response

Agonists of mouse and human TLRs

TLR	Ligand
1/2	Triacyl lipopeptides
2/6	Diacyl lipopeptides
3	dsRNA
4	Lipopolysaccharide
5	Flagellin
7	ssRNA
8	ssRNA in humans; unclear in mice
9	CpG DNA, malarial hemozoin
 0 ^a	Unknown
^b	Uropathogenic bacteria, Toxoplasma gondii
	profilin-like protein
12 ^b	Unknown
I 3 ^b	Unknown

^aExpressed only in humans. ^bExpressed only in mice.

- ✓ Type I transmembrane proteins
- ✓ LRR : *leucine-riche repeats*
- ✓ Recognize <u>extracellular bacterial</u> and viral PAMPs: TLR1, 2, 4, 5, 6 et 11
- ✓ Recognize bacterial and viral PAMPs in <u>endolysosomes</u>: TLR3, 7, 8, 9 et 10
- Translation of cytoplasmic signal via a domain TIR : Toll/interleukin 1 receptor

MyD88 : *Myeloid differentiation primary response gene* 88 TLR4

- ✓ MyD88 : a DD domain (death d) and TIR
- ✓ Interacts with IRAK4 (serin/threonin kinase)
- ✓ IRAK4 autophosphorylation and link to DD of IRAK1 and 2
- Nucleation with ubiquitine ligases E3: TRAF6, cIAP1 and cIAP2

- ✓ Recruitment of TAB2 / 3 adapters complexed with TAK1 kinase
- Recrutement of IKKα (NEMO): regulatory subunit of the IκB kinase complex (IKK)

Blue: adaptor Red: kinase Green: ubiquitin enzyme

...TLR4

- Translocation of the MyD88-T<u>RAF6</u>-Ubc13-<u>cIAP</u>-TAK1-IKKγ complex in the cytosol
- ✓ TAK1 kinase autophosphorylation
- ✓ Activation of JNK et p38 MAPK
- ✓ p38 activates CREB et c/EBPb transcription factors:
 - <u>chemokines</u> (Cxcl1, Cxcl2), <u>cytokines</u> (IL10, IL12β, IL1a, and IL1b), ECM remodeling (Mmp13) and adhésion (Vcam1) regulators
- ✓ JNK activates the transcription factorAP1:
 - TNF and other pro-inflammatory mediators

Blue: adaptor Red: kinase Green: ubiquitin enzyme Blue: transcription factor

...on the side of NF-kB

- ✓ IKKβ (kinase) substrates:
 - p105 precursor of p50 NF-кВ

ΙαΒ

- ✓ E3 ubiquitine ligase SCF^{b-TrCP} and proteasome degradation
- ✓ p105 degradation: Tpl2-MEK1-ERK activation, *Ptgs2* gene transcription(by CREB/ATF) and COX2 synthesis

PG : pain, fever...

- ✓ IκB degradation: translocation to the nucleus of the NF-κB complex consisting of ReIA (p65) and NF-κB1 (p50)
- ✓ Expression of pro-inflammatory genes ...

Protéines induced by NF-κB

Protein	Function
RAGE	PRR belonging to the immunoglobulin superfamily that recognizes multiple ligands including HMGB1
cIAP2	Ubiquitin ligase that regulates NF-kB activation
Caspase-11	Aspartate-specific cysteine protease implicated in inflammation
MCP1	Chemokine for monocyte recruitment
MIP1a	Chemokine for leukocyte recruitment
RANTES	Chemokine for monocyte and T-cell recruitment
CD200	Binds CD200R1 and inhibits macrophage activation
Complement factor B	Serine protease in the alternative complement activation pathway
c-FLIP	Inhibitor of death receptor-induced apoptosis
GM-CSF	Growth factor that promotes differentiation and activation of DCs, macrophages, and neutrophils
KC	Chemokine for neutrophil recruitment
MIP2	Chemokine for neutrophil recruitment
Tissue factor	Coagulation factor
ICAM1	Cell adhesion molecule that interacts with b2 integrins
IFNb	Suppressor of virus replication
IL1b	Cytokine that amplifies the inflammatory response
IL6	Pleiotropic cytokine that stimulates fever, production of hepatocyte acute phase proteins, and lymphocyte differentiation
IL12 p40	Component of heterodimeric IL12 and IL23, which modulate NK cell and lymphocyte effector functions
MMP9	Metalloproteinase that degrades extracellular matrix
IkBa	Inhibitor of NF-kB signaling
lkBb	NF-kB transcriptional coactivator
iNOS	Enzyme that makes anti-microbial nitric oxide
E-selectin	Cell adhesion molecule
P-selectin	Cell adhesion molecule
MnSOD	Enzyme that converts superoxide to hydrogen peroxide
TNF	Cytokine that amplifies the inflammatory response
A20	Inhibitor of NF-kB signaling by TLRs and TNF-R1
VCAM1	Cell adhesion molecule that interacts with b1 integrin

Functions of genes over-expressed by TLR4

Genes

Ccl2, Ccl3, Ccl4, Ccl5, Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccrl2 Icam I, Vcam I Bcl2al, Cflar Mmp13 Ednl Hdc, Nos2, Ptges, Ptgs2 III a, III b, II6, III 8, Tnf lfnb Birc2, Birc3, Casp4, Mefv, Nfkbiz Bcl3, Dusp I, Nfkbia, Socs3, Tnfaip3, Zc3h I 2a Fpr1, Nlrp3 Ch25h, Icosl, III 0, III 2a, III 2b, III 5, Tnfsf9

Output

Leukocyte recruitment

Cell adhesion Cell survival Remodeling of extracellular matrix Vascular effects Synthesis of inflammatory mediators Inflammatory cytokines Antiviral response Intracellular signaling (positive) Intracellular signaling (negative) PRRs Regulators of adaptive immune response

TLR7 and 9: MyD88-dependent induction of type I IFN

TLR7 and 9: MyD88-dependent induction of type I IFN

 ✓ From the endosome of plasmacytoid dendritic cells
✓ Anti-viral response: IFNα and IFNβ

 ✓ Commitment of the MyD88-IRAK4-IRAK1-TRAF6 complex

✓ Dimerization of IRF7 and translocation in the nucleus

TLR3 and 4: TRIF (TICAM1) dependent signaling

TLR3 and 4: TRIF (TICAM1) dependent signaling

- From the **endosomal compartment**, (anti-viral dsRNA) two pathways:
- ✓ Via TRIF (TICAM1) and TRAM (TICAM2) adapters
- ✓ Interaction of TRIF with RIP1 kinase and E3 ubiquitin ligase Peli I: activation of NF-κB
- ✓ Interaction of TRIF with TBK1 kinase and TRAF3 ubiquitin ligase: activation of the IRF3 transcription factor

TLR3 and 4: TRIF (TICAM1) dependent signaling

Simplified view of TLR / IL-1R TNFR signaling pathways

- NODs: nucleotide oligomerization domain receptors
- NLRP / NALPs: NACHT, LRR and pyrin domains containing proteases
- NLRC4 / IPAF: NLR family CARD domaincontaining protein 4 / IL-1β-converting enzyme (ICE)-protease activating factor
- NAIPs: Neuronal apoptosis inhibitor factors
- CIITA: MHC class II transactivator

According to the phylogenetic relationships, NLRs can be divided into 3 <u>subfamilies</u>:

- NODs: NOD1, NOD2, NOD3 (NLRC3), NOD4 (NLRC5), NOD5 (NLRX1), CIITA
- NLRPs (NALPs): NLRP1, NLRP2, NLRP3, NLRP4, NLRP5, NLRP6, NLRP7, NLRP8, NLRP9, NLRP10, NLRP11, NLRP12, NLRP13, NLRP14
- IPAF: IPAF (NLRC4), NAIP

23 NLRs encoded in the human genome (34 in mouse).

NLRs are structured by three distinct domains:

- I. The ligand-sensing LRRs (leucine-rich repeat) domain
- The NACHT or nucleotide binding domain (NBD), which is responsible for the capacity of NLRs to oligomerize
- The effector pyrin domain (PYD), or The caspase recruitment domain family (CARD), or
 The baculovirus inhibitor of epoptosis rep

The baculovirus inhibitor of apoptosis repeat (**BIR**) domains

NLR Subfamiles

All NLRs signaling pathways

- Transcription factor's signaling pathways
- Inflammasome

The NOD nucleotide-binding oligomerization domain proteins

- Sense conserved fragments from the cell wall of many types of bacteria
- **NODI** senses the D-γ-glutamyl-meso-DAP dipeptide (iE-DAP), found in PGN of all Gram-negative and certain Gram-positive bacteria
- **NOD2** recognizes the muramyl dipeptide (MDP) found in almost all bacteria
- In the host cytosol (microbial surveillance of pathogen invasion)
- Activate intracellular signaling pathways that drive proinflammatory and antimicrobial responses

The NOD (nucleotide-binding oligomerization domain) proteins

- Ligand bound NODI and NOD2 oligomerize and signal via the serine/threonine RIP2 (RICK,CARDIAK) kinase through CARD-CARD homophilic interactions. Activated RIP2 mediates ubiquitination of NEMO/IKKγ leading to the activation of NF-κB and the production of inflammatory cytokines.
- Furthermore, poly-ubiquitinated RIP2 recruits **TAKI**, which leads to **IKK** complex activation and the activation of **MAPKs**
- Signaling by NOD2 has been shown to involve the adapter protein CARD9, to mediate p38 and JNK signaling through RIP2.
- Genetic mutations in NOD2 are associated with Crohn's disease, a chronic inflammatory bowel disease

The NOD (nucleotide-binding oligomerization domain) proteins

- Ligand recognition relieves intramolecular autoinhibitory interactions, leading to NOD oligomerization.
- Recruitment of the downstream serine/threonine kinase (S/T kinase)
 RIPK2 occurs through CARD-CARD interactions.
- Positive or negative regulation by posttranslational modifications (phosphorylation and pUb events).
- Multiple regulatory effectors: LUBAC (linear ubiquitin chain assembly complex) stands for linear pUb chain assembly complex, OTULIN (deubiquitinase)

Caruso et al. Immunity 41, 18, 2014

The NOD (nucleotide-binding oligomerization domain) proteins

Inflammasome : In professional innate immune cells In epithelial cells

NLR, nucleotide-binding domain and leucine-rich repeat receptors AIM2r, absent in melanoma 2

NAIP, NOD-like receptor family apoptosis inhibitory protein
NLRC4 (IPAF), NLR family CARD domain-containing protein 4
NLRP / NALP, NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein

NACHT, nucleoside-triphosphatase (NTPase) domain found in apoptosis proteins

CARD, caspase-activation and recruitment domain

NEK7, NIMA-related kinase 7

PYD, pyrin domain

LRR, leucine-rich-repeat domain

NBD, nucleotide-binding domain

CC, coiled-coil domain

FIIND, function-to-find domain

BIR, baculovirus inhibitor of apoptosis repeat

ASC, apoptosis-associated speck-like protein containing a CARD

DHX9, DEAH-box helicase 9

Trends in Immunology (2019), https://doi.org/10.1016/j.it.2019.09.005

AIM2r, absent in melanoma 2

NAIP, NOD-like receptor family apoptosis inhibitory protein

NLRC4, NLR family CARD domain-containing protein 4

NLRP, NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein

NACHT, nucleoside-triphosphatase (NTPase) domain found in apoptosis proteins

ASC, apoptosis-associated speck-like protein containing a CARD

NLRP1b Inflammasome

NLRP, NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein NACHT, nucleoside-triphosphatase (NTPase) domain found in apoptosis proteins NBD, nucleotide-binding domain LRR, leucine-rich-repeat domain FIIND, function-to-find domain CARD, caspase-activation and recruitment domain

ASC, apoptosis-associated speck-like protein containing a CARD

37

NLRP3 Inflammasome

Canonical NLRP3 Inflammasome

NIMA-related kinase 7 (NEK7)

Non-cannonical NLRP3 Inflammasome

oxPAPC, oxidized phospholipid 1-palmitoyl-2arachidonoyl-sn-glycero-3-phosphorylcholine

NAIP–NLRC4 inflammasome

NAIP, NOD-like receptor family apoptosis inhibitory protein

NLRC4 (IPAF), NLR family CARD domaincontaining protein 4

NLRP, NACHT, LRR, FIIND, CARD domain and PYD domains-containing protein

NACHT, nucleoside-triphosphatase (NTPase) domain found in apoptosis proteins

CARD, caspase-activation and recruitment domain

ASC, apoptosis-associated speck-like protein containing a CARD

NAIP–NLRC4 inflammasome

Cryoelectron Tomography of the NAIP5/NLRC4 Inflammasome. Stepwise NAIP5/NLRC4 Inflammasome Activation Model:

- I. Flagellin primes NLRC4 by inducing phosphorylation, and binds and activates NAIP5.
- 2. Activated NAIP5 recruits and activates primed NLRC4 by inducing similar conformational rearrangements to form the NAIP5/NLRC4/FliC-D0L complex.
- 3. This complex forms a nucleation site for helical NLRC4 polymerization. Activated NAIP5 might also be incorporated at low frequency.
- 4. a, The CARD-exposing side forms a nucleation complex for caspase-I multimerization.
- 5. b, Alternatively, the CARD-exposing side of the helical complex allows dimerization

NAIP5-PKG/NLRC4/FliC

Cryoelectron Tomography of the NAIP5/NLRC4 Inflammasome.

AIM2 inflammasome

- activated in response to microbial or self-DNA.
- type I IFNs drives the expression of GBPs and IRGB10 and target bacterial and vacuolar membranes for destruction (releasing bacterial DNA) => AIM2 activation.
- DNA viruses can activate AIM2 independently of type I IFN.
- AIM2 detects radiation-induced host DNA damaged in the nucleus. AIM2 also recognizes host DNA that has leaked into the cytoplasm following damage to the nucleus or mitochondria.
- Upon binding to DNA, AIM2 recruits ASC and caspase-1 to form an active inflammasome complex.

Pyrin Inflammasome

- phosphorylated by the Ras homolog family member A (RhoA) effector kinases, protein kinase N1/2 (PKN1/2), and is bound to 14-3-3 proteins that keep pyrin in an inactive state.
- Bacterial toxins such as *Clostridium* difficile TcdA and TcdB can inhibit RhoA activity and subsequent PKN1/2 phosphorylation, thereby leading to pyrin dephosphorylation and 14-3-3 protein disassociation.
- Unhindered pyrin initiates the recruitment of ASC and caspase-I, forming an active inflammasome complex.

RIG-I antiviral signaling

MAVS: mitochondrial antiviral signaling protein (IPS-1,VISA or Cardif) TRAF3:TNF receptor-associated factor 3 IKKε/TBK1: I-kappa-B kinase-epsilon/TANKbinding kinase I IRF: interferon regulatory factor (transcription factors) IFN: type I (IFNα and IFNβ) and type III interferons.

The type I IFNs bind type I IFN receptors on the surface of cells to activate JAK-STAT (Janus kinase/signal transducers and activators of transcription) signaling. This leads to the induction of hundreds of interferon stimulated genes (ISGs) that amplify the IFN response:

- death of infected cells
- protection of surrounding cells
- activation of the antigen-specific antiviral immune response

By Bor087 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=76541774

Experimental study: TL5 and bacterial flagellins

TLR5 and bacterial flagellins

TLR5 and bacterial flagellins

B.subtilis V.anguillarum P.aeruginosa L.pneumophila S.typhimurium S.enterica S.marcescens E.tarda P.mirabilis E.coli S.flexneri L.monocytogenes B.bacilliformis α R.meliloti C.jejuni C.coli H.pylori ε H.felis H.hepaticus W.succinogenes

Clostridioides (Clostridium) difficile

Gram + bacillus, strict anaerobic, sporulated and motile

- ✓ Responsible for 10 to 25% of post-antibiotic diarrhea.
- ✓ Responsible for 95% of cases of pseudomembranous colitis.
- ✓ Leading cause of nosocomial infectious diarrhea in adults.
- ✓ Risk of frequent recurrence (20% 1st episode, 60% beyond).
- \checkmark High risk of mortality (up to 50%) .

Virulence factors

✓ Toxins TcdA et TcdB✓ Colonization facteurs:

- Adhesin-acting proteins:
 - S layer (Calabi et al., 2007)
 - Cwp66 (Waligora et al., 2001)
 - Fbp68 (Hennequin et al., 2003)
 - GroEL (Hennequin et al., 2001)

- Proteolytic enzymes (Cwp84). (Janoir et al., 2007)

✓Flagella: FliC, FliD

(Cunningham et al., 2004)

Flagellar proteins

✓ Mobility. (Tastevre et al., 2001)

 \checkmark Adhesion and colonization of mucous membranes.

(Lillehoj et al., 2002)

 \checkmark Auto-agglutination and formation of biofilms.

(Blair et al., 2008)

- ✓ Cellular invasion. (Grant et al., 1993)
- Regulation of the secretion of non-flagellar proteins involved in virulence. (Anderson et al., 2010; Barketi et al. 2014)

✓ Immune response. (Cunningham et al., 2004)

Role of flagella in inducing inflammatory response

Hayashi, 2001 Zeng et al., 2006

Role flagella of *C. difficile* in the amplification of the intestinal inflammatory response during infection

To characterize in vitro and in vivo the signaling pathways involved in the interaction between C. difficile flagella and the epithelial cell via the innate immune response receptor TLR5

C. difficile 630 (YP_001086707.1) C. difficile R20291 (YP_003216748.1) S. typhimurium LT2 (NC_003197.1) H. pylori B8 (NC_014256.1)

Induction of IL-8 by C. difficile flagellin via TLR5

MDCK-TLR5 epithelial cell model

MDCK-TLR5

MDCK contrôle

Activation of MAPKs by *C. difficile* flagellin via TLR5

MDCK-TLR5 epithelial cell model

Activation of NF-kB by *C. difficile* flagellin via TLR5

MDCK-TLR5 epithelial cell model

Post-translational modifications

Activation of MAPKs and NF-kB by C. difficile flagellin via TLR5: Caco-2 epithelial cell model

Activation of MAPKs and NF-kB by C. difficile flagellin via TLR5: Caco-2 epithelial cell model

Predominantly NF-kB activation by *C. difficile* flagellin via TLR5: chemical inhibition

62

Predominantly NF-kB activation by C. difficile flagellin via TLR5: RNA interference (siRNA)

In vivo study (mouse model)

Anatomopathological analysis of caecums

	11 2	Clinical score				Anatomopathologiques analysis	
C57BL/6 mice	C. difficile 027 (10 ⁵ spores)	Loose stools	Reduced activity	Spiky coat	Death	Macro	Micro
n = 6	Wild type strain	6	6	6	3		
n = 6	Unflagellated mutant (ΔFliC)	2	2	2	-	6	
n = 6	Non toxinogenic, flagellated mutant (A ⁻ B ⁻)	-	_	_	-	B .	S CONSERV
n = 6	Uninfected control	_	-	_	-		ELABORE

The \triangle FliC et A-B- mutants induce less inflammation than the wild-type 027 strain

Intestinal inflammation induced by the wild strain of C. difficile

Negative control

Wild type strain

Unflagellated mutant Non toxinogenic mutant

Total scores

Activation of MAPKs and NF-kB by the wild strain of *C. difficile*

Pathogenesis and inflammatory response

- Adhesion / colonization
- Effect of toxins
- Flagellin is recognized by TLR5 at the basolateral level of epithelial cells
- Production of proinflammatory cytokines and induction of an immune response

