
ORIGINAL ARTICLE

Cancer-associated fibroblast exosomes regulate survival and
proliferation of pancreatic cancer cells
KE Richards1,2, AE Zeleniak1,2,3, ML Fishel4,5,6,7, J Wu2,8,9, LE Littlepage2,3,6,8,9 and R Hill1,2,3,6

Cancer-associated fibroblasts (CAFs) comprise the majority of the tumor bulk of pancreatic ductal adenocarcinomas (PDACs).
Current efforts to eradicate these tumors focus predominantly on targeting the proliferation of rapidly growing cancer epithelial
cells. We know that this is largely ineffective with resistance arising in most tumors following exposure to chemotherapy. Despite
the long-standing recognition of the prominence of CAFs in PDAC, the effect of chemotherapy on CAFs and how they may
contribute to drug resistance in neighboring cancer cells is not well characterized. Here, we show that CAFs exposed to
chemotherapy have an active role in regulating the survival and proliferation of cancer cells. We found that CAFs are intrinsically
resistant to gemcitabine, the chemotherapeutic standard of care for PDAC. Further, CAFs exposed to gemcitabine significantly
increase the release of extracellular vesicles called exosomes. These exosomes increased chemoresistance-inducing factor, Snail, in
recipient epithelial cells and promote proliferation and drug resistance. Finally, treatment of gemcitabine-exposed CAFs with an
inhibitor of exosome release, GW4869, significantly reduces survival in co-cultured epithelial cells, signifying an important role of
CAF exosomes in chemotherapeutic drug resistance. Collectively, these findings show the potential for exosome inhibitors as
treatment options alongside chemotherapy for overcoming PDAC chemoresistance.

Oncogene (2017) 36, 1770–1778; doi:10.1038/onc.2016.353; published online 26 September 2016

INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) has a dismal 5-year
survival rate of o7%.1 PDAC is currently the fourth leading cause
of cancer-related deaths in the United States and is predicted to
become the second leading cause of cancer-related deaths by
2030.2 The poor prognosis of the disease is associated with late
detection, aggressive tumor biology and poor response to
available therapies. Gemcitabine (GEM), a nucleoside analog, is
the standard chemotherapeutic agent for adjuvant therapy of
resectable PDAC and a commonly used agent in other treatment
settings, including neoadjuvant treatment of borderline resectable
PDAC and palliative treatment of metastatic PDAC. Despite GEM
being one of the most commonly used, single chemotherapeutic
agents in pancreatic cancer, response rates are poor. The vast
majority of patients (74%) receiving adjuvant GEM eventually
show tumor recurrence.3 This dismal prognosis shows an urgent
need for greater understanding of the complete biology of PDAC
to develop effective therapeutic strategies.
Current therapies focus predominantly on targeting the

proliferation of the rapidly growing epithelial cancer cells.
However, many cell types, including supporting cells called
fibroblasts, contribute to the microenvironment surrounding
cancer cells. Remarkably, the majority of the tumor bulk of PDACs
consists of fibroblasts.4 Fibroblasts may inhibit or foster tumor
development.5 They were previously believed to serve merely a
passive role in PDAC drug resistance, impeding drug delivery by
physically blocking cytotoxic chemotherapeutics from reaching

their target epithelial cells.6,7 This led to the development of
fibroblast-depleting therapies. Unfortunately, these therapies
showed either very small increases in survival8 or more aggressive
tumors.9 These results show a need to better understand how
fibroblasts react to chemotherapy and how they may contribute
to drug resistance, instead of merely depleting fibroblasts, to
devise effective treatment strategies.
Recent studies have shown that exosomes, secreted membrane

vesicles that range in size from 30–100 nm in diameter,10,11

released from fibroblasts have been found to increase invasive
behavior12 and therapy resistance pathways13 in breast cancer
cells. Exosomes contain mRNA, DNA, proteins and are enriched
with miRNA.14 Several studies have shown that exosomal-derived
miRNAs promote metastases15 and enhance endothelial cell
migration.16 Yet no studies have examined the effect(s) of
exosomes derived from fibroblasts exposed to chemotherapy.
In this study, we show that cancer-associated fibroblasts (CAFs)

are innately chemoresistant and have an active role in regulating
the chemoresistance of cancer cells. CAFs exposed to GEM
dramatically increase the release of exosomes that increased cell
proliferation and survival in recipient epithelial cancer cells.
Mechanistically, we demonstrated that the expression of Snail
(SNAI1) as well as the Snail target, microRNA-146a, was increased
in the exosomes of GEM-treated CAFs. Furthermore, suppressing
CAF exosome release in vitro reduced Snail expression in co-
cultured epithelial cancer cells and reduced survival of drug-
resistant cancer cells, suggesting that blocking exosome
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communication may be a promising new therapeutic strategy for
patients receiving GEM-based treatment regimens.

RESULTS
Pancreatic fibroblasts are innately chemoresistant
We first compared the innate drug resistance of CAF cell lines
created from patient-derived tumor samples with that of epithelial
cancer cell lines. Patient-derived fibroblasts were grown out of
tumor samples obtained from patients who had undergone
surgical resection. The CAFs displayed an elongated, mesenchy-
mal morphology and stained positively for fibroblast markers
vimentin and α-SMA17 (Figure 1a). Sequencing revealed no KRAS
mutation, indicating that these CAF cell lines were truly of
fibroblast origin (Supplementary Figure S1). CAFs and normal
fibroblasts had greater survival rates than chemoresistant
epithelial cells (PANC1) and chemosensitive epithelial cells (L3.6)
when treated with the same dosage of the chemotherapeutic
agent, GEM (Figure 1b). Having shown that CAFs are resistant to
GEM, we next assessed if the increased survival of CAFs exposed
to GEM could be a result of CAFs undergoing senescence and not
incorporating the drug. Therefore, we analyzed cell proliferation of
GEM-treated CAFs and epithelial cells. The most chemoresistant
CAF cell line, CAF1, also retained the most proliferation during
GEM treatment, whereas the second leading resistant CAF cell line,
CAF2, showed dramatically decreased proliferation (Figure 1c). To
further elucidate the role of proliferation on chemoresistance, we
compared the survival rate of CAFs and epithelial cells with similar

proliferation rates (CAF2 and PANC1 cell lines, respectively).
Although CAF2 and PANC1 cells both demonstrate a relatively low
proliferation rate following exposure to GEM, CAF2 cells still
showed more than a twofold higher cell survival rate compared
with PANC1 cells following GEM treatment (Figure 1d). Taken
together, these data demonstrate that fibroblasts have an innate
resistance to GEM instead of a growth-dependent resistance
mechanism.

Pancreatic CAF-conditioned media increases proliferation and
survival of epithelial cancer cells
Considering the important role of cell extrinsic factors on cell
growth and survival, we next assessed whether factors secreted by
the innately chemoresistant fibroblasts could affect proliferation
and survival of epithelial cancer cells. We first determined the
effect CAF-conditioned media had on the proliferation of
chemosensitive L3.6 cells. An equivalent number of L3.6 or CAF
cells were plated and incubated in Dulbecco's modified eagle
medium (DMEM) for 24 h. Conditioned cell media from either the
L3.6 or the CAF cells was then transferred onto recipient L3.6 cells
each day for 6 days. CAF-conditioned media increased prolifera-
tion of L3.6 cells by more than 50% compared with L3.6-
conditioned media (Figures 2a and b). Having demonstrated that
media from GEM-resistant CAF cells could increase the prolifera-
tion of GEM-sensitive L3.6 cells, we next assessed if this effect was
CAF specific or if GEM-resistant epithelial cancer cells could also
elicit this change in proliferation. We observed that conditioned

Figure 1. Pancreatic fibroblasts are innately chemoresistant. (a) Immunofluorescence stain for α-SMA and vimentin of CAF1 and wild-type
(WT) fibroblasts. (b) Cells were treated with 1 μM GEM for 2–6 days and live and dead cells were counted to obtain percent cell survival.
(c) Cells were treated with 1 μM GEM for 2 days or left untreated and total cells were counted to obtain percentage of proliferation retention
during GEM treatment. (d) Percent cell survival of CAFs (CAF2) and epithelial cells (PANC1) with similar proliferation retention rate over 6 days
1 μM GEM treatment. **P-valueo0.01.
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media from the chemoresistant PANC1 epithelial cancer cell line
did not elicit a significant increase in proliferation (Supplementary
Figure S2). Next, we determined if CAF-conditioned media also
affected the chemoresistance of epithelial cells. L3.6 cells were
grown in either L3.6 or CAF cell-conditioned media for 6 days then
treated with 100 nM GEM for 3 days, and cell survival was
assessed. We observed that L3.6 cells grown in CAF-conditioned
media and subsequently treated with GEM showed a significant
increase in cell survival compared with L3.6 cells grown in L3.6-
conditioned media (Figures 2c and d). Taken together, these data
show that CAF-secreted factors affect proliferation and drug
resistance of epithelial cancer cells.

Gemcitabine increases CAF exosome secretion
Exosomes are cell-derived vesicles that can serve as important
intercellular regulators of many oncogenic properties.18 Given that
CAF-conditioned media regulates proliferation and drug resis-
tance of epithelial cancer cells, we asked whether CAF-derived
exosomes might contribute to this effect. First, exosomes were
purified from the conditioned media of CAF cells and their size
and structure was confirmed using transmission electron micro-
scopy as well as particle size analysis. Particles ranged from
~20 nm to ~ 80 nm in diameter, indicative of exosomes,19 and
immunoblotting of purified exosomes revealed expression of
CD81, a known exosome marker20 (Figure 3a; Supplementary
Figure S3). We next assessed the effect GEM treatment had on
exosome release in CAFs. Samples obtained from the media of
GEM-treated CAFs displayed a more intense CD81 band by
immunoblotting than untreated CAFs, suggesting a greater
number of exosomes were present in the media of GEM-treated

CAFs (Figure 3a). To investigate this further, CAFs were transduced
with a lentiviral vector that allowed the visualization of exosomes
by labeling CD63, a known exosome marker,20 with Green
Fluorescent Protein (GFP). Upon GEM treatment, CAFs displayed
increased levels of GFP expression (Figures 3b and c), suggesting
that GEM treatment caused augmented levels of CD63 expression,
potentially from increased exosome production. To confirm this
possibility, conditioned media was collected from untreated and
GEM-treated CAF cell lines and epithelial pancreatic cancer cell
lines, and the number of exosomes was quantified. Although all
cell lines increased exosome secretion upon GEM treatment,
pancreatic CAFs and wild-type fibroblasts displayed the largest
increase in exosome release, significantly increasing the amount
of exosomes found in the media more than sevenfold following
GEM treatment (Figure 3d). Having shown that GEM caused
increased exosome release from CAF cell lines, we next assessed if
this effect was observed in CAFs treated with nab-paclitaxel, an
agent that is now commonly used along with GEM.8 CAFs treated
with nab-paclitaxel also showed a significant increase in released
exosomes compared with untreated controls, but to a lesser
extent than the release observed following GEM treatment
(Supplementary Figure S4). These data reveal that CAFs increase
exosome secretion during chemotherapy treatment.

CAF exosomes increase proliferation and survival of cancer
epithelial cells
To determine if these exosomes released by GEM-treated CAFs
could affect epithelial cell behavior we first tested if epithelial cells
could naturally take up CAF-derived exosomes. We collected
media from CAFs transduced with a GFP-CD63 lentivirus

Figure 2. Pancreatic CAF1-conditioned media increases proliferation and survival of epithelial cells. (a) L3.6 cells were grown in CAF1-
conditioned media or L3.6-conditioned media for 8 days and total cells were counted. (b) Cell proliferation assay (MTT assay) was performed
after 8 days L3.6 cell growth in conditioned media. (c) L3.6 cells were grown in cell-conditioned media for 6 days then treated with 100 nM
GEM for 3 days, and live cells were counted. (d) Cell proliferation assay (MTT) was performed after 6 days L3.6 cell growth in conditioned
media and 3 days of 100 nM GEM treatment. **P-valueo0.01.
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(GFP-CD63-CAFs). This media was incubated on L3.6 cells for 48 h,
and the cells were imaged. We observed that L3.6 cells, as well as
several other PDAC cell lines, cultured with media from GFP-CD63-
CAFs were positive for GFP-expression, indicative of exosome
uptake21 (Figure 4a; Supplementary Figure S5).
Having confirmed that epithelial cells could uptake CAF-derived

exosomes, we next studied the effect GEM-treated CAF exosomes
have on cell behavior in recipient cells. Equivalent numbers of
CAFs were plated in exosome-free media and then treated with
phosphate-buffered saline (PBS) or 1μM GEM for the same duration
of time. Exosomes were then isolated from the CAF cell-
conditioned media and added to the epithelial cancer cell lines.
Exosomes derived from GEM-treated (GT) CAFs significantly
increased epithelial cell proliferation and chemoresistance more
than exosomes derived from untreated CAFs (Supplementary
Figure S6). Therefore, we further assessed the role of GT-CAF-
derived exosomes in regulating epithelial cell proliferation and
chemoresistance in both chemosensitive and chemoresistant
PDAC cell lines. GT-CAF exosomes increased both proliferation
(Figure 4b) and survival (Figure 4c) of chemosensitive epithelial
L3.6 cells. In contrast, exosomes from GT-chemoresistant-
epithelial-PANC1 cell exosomes did not elicit the same response
(Figures 4b and c). Further, GT-CAF exosomes also increased
proliferation and survival of chemoresistant PANC1 and
AsPC1 cells (Figures 4d and e). Thus, these data indicate that

exosomes released by GEM-treated CAFs are capable of increasing
proliferation and survival in recipient epithelial cells.

Pancreatic CAFs Alter Snail and miR-146a expression during
gemcitabine treatment
Prompted by these results, we next sought to investigate the
molecular mechanism responsible for the ability of exosomes
derived from GEM-treated CAFs to increase proliferation and
survival in recipient epithelial cells. To elucidate this, we first
sought to determine how pancreatic fibroblasts are innately
chemoresistant. CAFs were treated with GEM, and the expression
levels of miRNAs were analyzed via miRNA-Seq. We observed
that fibroblasts showed a marked increase in microRNA-146a
(miR-146a) expression following GEM treatment (Supplementary
Table S1). To further investigate this, we utilized RT-PCR to
determine the expression of miR-146a in CAFs treated with GEM
compared with untreated CAFs. GEM-treated CAFs demonstrated
significantly higher expression of miR-146a compared with
untreated CAFs (Figure 5a). miR-146a is directly regulated by
the promoter binding transcription factor, Snail, which promotes
chemoresistance, EMT and metastasis.22 Therefore, we investi-
gated if GEM treatment of CAFs caused increased expression of
Snail. Indeed, GEM exposure also increased Snail expression in
CAFs (Figure 5a). Furthermore, knockdown of Snail expression
using siRNA caused downregulation of miR-146a expression in

Figure 3. GEM increases CAF exosome secretion. (a) CAF1s were left untreated (NT) or treated with 1 μM GEM (GT) for 4 days. Exosomes were
isolated from conditioned cell media, and protein lysates were used to perform a western blot for CD81 and beta-actin (left). Isolated
exosomes were examined for size and structure via transmission electron microscopy (right). (b) CAF1 cells transduced with a GFP-CD63
lentivirus (GFP-CD63-CAF1s) were treated with 1uM GEM (GT) or left untreated (NT) and fluorescence was analyzed via microscopy. (c) Total
corrected cell fluorescence of GFP-CD63-CAF1 cells was quantified using ImageJ. (d) Cells were treated with 1 μM GEM (Fibroblasts and
PANC1), 10 nM GEM (L3.6) or left untreated for 4 days (NT), and exosomes were collected and quantified. Scale bar, 200 μm. *P-valueo0.05;
**P-valueo0.01.
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CAFs (Figure 5b). These data establish a GEM-induced upregula-
tion of the Snail pathway in CAFs.

Gemcitabine increases the secretion of both miR-146a and Snail
through pancreatic CAF exosomes
Since GEM upregulates Snail and miR-146a expression in PDAC
CAFs and GT-CAF exosomes increase proliferation and survival in
epithelial cells, we next investigated if Snail and miR-146a could
be delivered to cells through GT-CAF exosomes. Since exosomes
contain both microRNAs and mRNA14 we first tested if both
miR-146a and Snail mRNA were increased in GT-CAF-derived
exosomes. We observed that GEM treatment increased the
amount of both miR-146a and Snail mRNA in CAF-derived
exosomes (Figure 5c). Furthermore, the addition of GT-CAF
exosomes to epithelial cell media also increased the levels of
Snail mRNA (Figure 5d) and miR-146a (Figure 5e) within recipient
chemosensitive and chemoresistant epithelial cells. Thus, our data
reveal that exosomes produced by GEM-treated CAFs augment
Snail and miR-146a levels in epithelial cells.

Blocking CAF exosome secretion reduces PDAC cell survival
Having shown that chemotherapy treatment of CAFs causes the
increased secretion of chemoresistance-inducing exosomes, and
increased cell survival, we next assessed whether blocking
exosome secretion would sensitize PDAC cells to GEM. First,
we assessed whether physically removing exosomes from
CAF-conditioned media would affect its ability to increase cell
survival in epithelial cells following exposure to GEM. AsPC1
cells were cultured in CAF-conditioned and exosome-depleted

CAF-conditioned media. Exosome-depleted conditioned media
was spun down at 120 000x g to pellet exosomes without
depleting the media of proteins. We observed that culturing
AsPC1 cells in CAF-conditioned media, compared with
AsPC1-conditioned media, led to greater survival rate during
GEM treatment; however, this survival rate was significantly
reduced when exosomes in CAF-conditioned media were
removed (Figure 6a). Having shown that physically removing
exosomes from CAF-conditioned media reduced its ability to
increase chemoresistance, we next sought to determine if a
compound that pharmacologically blocks exosome secretion
would elicit the same effect. Therefore, the drug, GW4869, which
blocks exosome secretion,23 was utilized to block CAF exosome
release in vitro and determine its impact on epithelial cell survival.
First, we determined if GW4869 could successfully block exosome
secretion in CAFs. We found that GW4869 decreased CAF
exosome secretion by ~ 70% in vitro in both untreated and
GEM-treated CAFs (Figure 6b). Furthermore, we found that
depletion of exosomes from CAF-conditioned media, using
GW4869 treatment or centrifugation, significantly reduced
expression of both Snail (Figure 6c) and miR-146a (Figure 6d) in
recipient epithelial cells receiving the CAF-conditioned media.
Next, we utilized co-culture studies to assess if GW4869 treatment
of CAFs would affect cell survival in recipient epithelial cells. CAFs
were plated on permeable inserts above chemoresistant or
chemosensitive epithelial cells. Although cells co-cultured with
CAFs showed a significantly increased survival rate following
exposure to GEM, blocking CAF exosome secretion using GW4869
treatment significantly reduced this survival benefit in multiple
cell lines (Figure 6c; Supplementary Figure S7).

Figure 4. GT-CAF exosomes increase cell number and survival of epithelial cells. (a) L3.6 cells were treated with GFP-CD63-CAF1 conditioned
media for 48 h and exosome uptake was visualized. (b) L3.6 cells were treated with L3.6, GT-PANC1 or GT-CAF1 exosomes for 6 days and total
cells were counted. (c) L3.6 cells were treated with L3.6, GT-PANC1 or GT-CAF1 exosomes for 6 days and 1μM GEM for 3 days, and live cells were
counted. (d) PANC1 cells were treated with PANC1 or GT-CAF1 exosomes for 6 days. AsPC1 cells were treated with AsPC1 or GT-CAF1
exosomes for 6 days. Total cells were counted. (e) PANC1 cells were treated with PANC1 or GT-CAF1 exosomes for 6 days, and AsPC1 cells were
treated with AsPC1 or GT-CAF1 exosomes for 6 days. All cells were then treated with 1μM GEM for 3 days, and live cells were counted.
*P-valueo0.05; **P-valueo0.01.
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Finally, we utilized a subcutaneous model to determine the
effect of blocking exosome secretion with GW4869 on tumor
growth in vivo. CAFs and AsPC1 cells were subcutaneously
implanted into NOD/SCID mice and treated with PBS (control),
GEM, or GW4869 alongside GEM (100 mg/kg body weight) twice
weekly for 2 weeks. Tumors of control mice and mice treated with
GEM steadily increased in size over time, whereas tumors of mice
given combination therapy (GW4869 and GEM) remained
relatively the same size, displaying significantly reduced growth
rate 10 days after treatment compared with control
(Supplementary Figure S8). Taken together, these data suggest
that GT-CAF derived exosomes are a key regulator of PDAC cell
chemoresistance; however, blocking exosome release may cir-
cumvent increased chemoresistance caused by exosome-
mediated signaling (Figure 7).

DISCUSSION
In this study, we show that exosomes from CAFs exposed to
chemotherapy are critical regulators of epithelial cancer cell
proliferation and survival. We first established that CAFs are
innately resistant to GEM. Next, we determined that CAF-
conditioned media supported epithelial cell growth and survival
during GEM treatment. More importantly, we demonstrate that
GEM-treated CAFs prolifically secrete exosomes that contain
chemoresistance-promoting factors like mRNA and microRNA to
recipient epithelial cells. miR-146a levels were highly increased in
CAFs during GEM treatment and found within these exosomes,
along with mRNA of its upstream transcription factor, Snail. PDAC

epithelial cells treated with GEM-treated CAF exosomes displayed
increased levels of Snail mRNA, increased proliferation and
increased chemoresistance. Finally, reduction of exosome release
suppressed the chemoresistance-promoting abilities of CAF cells.
GEM is the standard of care for adjuvant therapy of resectable

PDAC and is still one of the most commonly used chemother-
apeutic agents used in combination therapy. However, 74% of
patients receiving adjuvant GEM eventually relapse.3 Moreover,
GEM has already proven to be a paradoxical drug as it not only
promotes Snail expression, but also triggers NFκB activation,
CXCR4 expression, induction of reactive oxygen species, upregula-
tion of cancer-stem cell markers and AKT activity. Together, these
undesired side effects lead to increased chemoresistance and cell
motility.24–28 We show a previously unknown tumor-promoting
side effect of GEM treatment. In our study we observe that GEM
treatment causes CAFs to greatly increase the secretion of
chemoresistance-promoting exosomes. This evidence suggests
that GEM may promote chemoresistance through both cell
intrinsic and cell extrinsic mechanisms. GEM was previously
shown to upregulate expression of the transcription factor Snail
in PDAC cancer cells.29 Inhibiting Snail suppresses tumor growth,
metastasis and chemoresistance in many cancers, including
PDAC.29,30 Our data, showing GEM increases Snail expression in
pancreatic CAFs, provides new evidence that Snail has a role in
mediating chemoresistance in pancreatic cancer fibroblasts in
addition to pancreatic cancer epithelial cells. Further, our data
showing that GEM induces hypersecretion of Snail mRNA through
exosomes is a previously unknown potential mechanism of cell-
extrinsic chemoresistance.

Figure 5. Pancreatic fibroblasts upregulate and secrete miR-146a and Snail during GEM treatment. (a) RT-PCR. miR-146a and Snail levels were
altered in CAF1s during 1 μM GEM treatment (GT) (3 days) compared with untreated control (NT). (b) RT-PCR. CAF1s were treated with Snail-
siRNA, and Snail and miR-146a expression was measured compared with negative siRNA control treated CAFs. (c) Exosomes from untreated
and 1 μM GEM-treated CAF1s were isolated and Snail mRNA and miR-146a within CAF1 exosomes was quantified via RT-PCR using relative Ct
values. (d–e) L3.6 cells were treated with GT-CAF1 exosomes for 6 days (GT-CAF1/L3.6) or left untreated (L3.6 control). AsPC1 cells were treated
with GT-CAF1 exosomes for 6 days (GT-CAF1/AsPC1) or left untreated (AsPC1 control). Snail (d) and miR-146a (e) levels were quantified in
recipient cells via RT-PCR. *P-valueo0.05; **P-valueo0.01.
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Recent studies show oncogenic exosomes can promote
invasion,12 deliver oncogenic DNA to normal cells,31 increase
drug resistance of cancer cells32,33 and can prime distant organs
for metastasis.34–36 Recent data show that exosomes from
CAFs have a role in promoting chemoresistance in colorectal
and breast cancer cells.32,33 In our study, we show new evidence
that GEM treatment of CAFs causes increased release of
chemoresistance-promoting exosomes. On the basis of evidence
that the tumor bulk in PDAC is comprised mostly of fibroblasts,4

it is possible that the role of CAF-derived exosomes may be
even more important in pancreatic cancer than other cancers.
Our data supports the exploration of using exosome secretion
inhibitors in combination with currently approved therapeutic
regimens to combat chemoresistance. GW4869 was shown to
greatly diminish CAF exosome secretion as well as alleviate
chemoresistance in co-cultured cancer cells in vitro and
contributed to suppressed tumor growth in vivo. Further in vivo
studies are needed to fully explore the potential benefit of using
GW4869 to increase efficacy of combination treatments. This
would include testing GW4869 and various chemotherapy
combinations on autochthonous PDAC mouse models and
monitoring tumor growth and survival.
In conclusion, we show that fibroblasts exposed to chemother-

apy have an active role in promoting proliferation and chemore-
sistance of cancer cells through exosome signaling. The role of
exosomes in PDAC chemoresistance is an area that requires much
elucidation. Currently available therapeutic regimens may have
greater efficacy when treatments designed to inhibit exosome
secretion are utilized.

MATERIALS AND METHODS
Cell lines and cell culture
Commercial pancreatic cancer epithelial cell lines were purchased from
ATCC. Dr Timothy Donahue (University of California, Los Angeles) provided
L3.6pl cells.37 Fibroblast cell lines were generously gifted by Dr Melissa
Fishel of IU Simon Cancer Research Center. Briefly, patient-derived PDAC
tumor tissue was minced into 1–3 mm fragments, trypsinized for 30 min,
washed in DMEM with 10% fetal bovine serum, plated in a petri dish with
DMEM containing 10% fetal bovine serum and fibroblasts were allowed to
grow out of tumor fragments for 2–3 weeks. Cells were infected and
immortalized with hTERT by the Hanenberg Lab (IUPUI). Cells were
authenticated by IDEXX RADIL and were found to be mycoplasma free and
did not genetically match any cell line in the DSMZ database. Cells used in
experiments ranged from passage 2–10. Fibroblast nomenclature was
reduced for purposes of simplicity with ‘CAF1’ referring to UH1301-63 cells,
‘CAF2’referring to UH1303-02 cells and ‘CAF3’ referring to UH1303-49 cells.
SC00A5 cells are wild-type pancreatic fibroblasts purchased from
VitroBioPharma (Golden, CO, USA). Cells were grown in culture according
to standard procedures and protocols with DMEM (Sigma, St Louis,
MO, USA) or RPMI (Sigma) supplemented with 10% fetal bovine serum
RMBIO (Missoula, MT, USA) and 1% Pen-Strep (Thermo Fischer Scientific,
Waltham, MA, USA). L3.6 and fibroblast cells were grown in DMEM with
10% fetal bovine serum and 1% Pen-Strep. Cells were tested throughout
studies for mycoplasma using the MycoAlert kit (Lonza, Allendale, NJ, USA).

Lentivirus transduction
CD63-GFP labeled fibroblasts were created using the pCT-CD63-GFP
(pCMV, Exosome/Secretory, CD63 Tetraspanin Tag, plasmid DNA) HIV
lentiviral vector purchased from System Biosciences (Palo Alto, CA, USA).
Briefly, 50 000 cells were plated per well of a 6-well plate and lentivirus was
added 24 h later utilizing an MOI of 20. Cells were left undisturbed for 48 h

Figure 6. Inhibition of CAF exosome signaling suppresses chemoresistance. (a) AsPC1 cells were grown for 5 days in AsPC1-conditioned media
(AsPC1/AsPC1), CAF1-conditioned media (CAF1/AsPC1) or CAF1-conditioned media depleted of exosomes (CAF1-ED/AsPC1) and then treated
with 1 μM GEM for 3 days and live cells were counted. (b) CAF1s were treated with 20 μm GW4869 or dimethyl sulfoxide along with 1 μM GEM
or PBS for 3 days. Exosomes in media were collected, dyed with CFSE and quantified. (c) AsPC1 cells were co-cultured with AsPC1 cells, CAFs,
GW4869-treated CAF1s, DMEM alone (Blank/AsPC1) or GW4869 in DMEM (Blank+GW4869) for 6 days then treated during co-culture with 1μM
GEM for 3 days. Live co-cultured AsPC1 cells at the bottom of the plate were counted. (d) Snail expression was measured via RT-PCR in
AsPC1 cells co-cultured with untreated CAFs (CAF-NT/AsPC1) or GW4869-treated CAFs (CAF-GW/AsPC1). (e) L3.6 cells were cultured in
CAF1-conditioned (CAF1/L3.6) media or CAF1-conditioned media depleted of exosomes (CAF1-ED/L3.6). miR-146a expression was measured
via RT-PCR. **P-valueo0.01.
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then moved to a flask and treated with puromycin (1:1000) until all
remaining cells were fluorescent and thereafter cultured normally.

Exosome collection, detection and quantification
Collection. Cells were grown in exosome-free media. Media from cells was
collected, cells were washed with 3 ml PBS and PBS was collected. Media
and PBS together was spun down at 1200 r.p.m for 5 min, supernatant was
spun down at 16 500 g for 20 min and exosomes in supernatant were
isolated with the ExoQuick-TC system according to System Bioscience’s
protocol: https://www.systembio.com/downloads/Manual_ExoTC_WEB.pdf.
Exosome pellets were resuspended PBS.

Transmission electron microscopy. Exosomal protein was measured via a
BCA assay, and 10 μg exosomes were placed on copper grid. Exosomes
were wicked off to create a thin layer before addition of a thin layer of 2%
uranyl acetate in water. Grids were allowed to dry overnight, and
transmission electron microscopy performed the next day.

Particle size analysis. Exosomes were resuspended in PBS and particle
sizes were measured using the Beckman Coulture Delsa Nano S Particle
Analyzer which uses the Brownian motion of particles and dynamic light
scattering to measure particle diameters.

Western blot. Exosomes were isolated with ExoQuick-TC from 20 ml of
cell-conditioned media and protein blotting was performed according to
the manufacture’s protocol and standard procedures: https://www.system
bio.com/downloads/Manual_ExoTC_WEB.pdf.

Quantification. Exosomes were quantified using light transmission
spectroscopy, as previously described38 measuring number of particles
30–150 nm in diameter. For relative quantification exosome pellets were
resuspended in 200 μl PBS and incubated with 10 μM CFSE at 37 °C for 2 h.
Relative fluorescent units were measured via the Molecular Devices
SpectraMax M3 Multi-Mode Microplate Reader. Total corrected cell
fluorescence used to quantify CD63-GFP labeled cells was obtained using
ImageJ, wherein corrected total cell fluorescence= integrated density−
(area of fluorescent cells ×mean of background fluorescence).

In Vitro exosome transfer, media transfer and co-culture
Exosome treatment. Cells were plated at 500 000 cells/flask in exosome-
free media and were either treated with 1 μM GEM or PBS for 4 days.
Exosome pellets were collected with ExoQuick-TC (see protocol link above)

and resuspended in 400 μl PBS. Recipient cells were plated in 6-well plates
and treated with new media and 10 μl exosomes per day for 6 days.

Media transfer. Both donor and recipient cells were plated at 60 000 cells
per well in 6-well plates, the donor media was spun down at 1200 r.p.m for
5 min, and the supernatant was transferred to recipient cells each day for
6 days. Cells were then treated with GEM or PBS for 3 days before cell
quantification. CAFs and AsPC1 cells were plated at one million cells cells/
flask in exosome-free media and conditioned media was collected and
spun down at either 16 500 g for 20 min or 16 500 g for 20 min as well as
120 000 g for 70 min to deplete the media of exosomes without depletion
of proteins. Cells were grown in conditioned media for 4 days, treating
with new conditioned media each day, then treated with 1μM GEM for
3 days while in conditioned media before quantification of live cells.

Co-culture. Cells were plated in a 12-well plate and on 12-well Transwell
polyester permeable supports (Corning, Corning, NY, USA) with 0.4 μm
pore size. Cells were co-cultured for 3–6 days whereas cells on the
permeable support were treated with GW4869 (20 μM) or dimethyl
sulfoxide, and then cells below the support were treated with GEM
(100 nM–1 μM) for 3 days before quantification of live cells. The number of
cells plated per well and concentration of GEM used was dependent upon
the previously determined chemosensitivity of the cell lines 39 and cell
proliferation rate. Cells on permeable supports were treated with 20 μM
GW4869 or dimethyl sulfoxide once every 3 days. Permeable supports of
the control group received either media alone or media+GW4869.
Epithelial cells treated with CD63-GFP-labeled CAF-conditioned media
were incubated in new conditioned media each day for 2 days before
washing the cells and imaging. CD63-GFP CAFs were grown in phenol-red
free media for 24 h, media was spun at 16 500 g for 20 min and
supernatant was placed onto recipient cells.

RT-PCR and RNA Collection
RNA was collected using TRIzol according to standard protocol:
https://tools.thermofisher.com/content/sfs/manuals/trizol_reagent.pdf. RT-PCR
was performed according to the QIAGEN provided protocol. QIAGEN SYBR
Green QuantiFast RT-PCR kit and protocol was utilized for quantification of
mRNA, and QIAGEN miScript II RT Kit and protocol along with QIAGEN
miScript SYBR Green PCR Kit and protocol was utilized for quantification of
miRNA with the Bio-Rad CFX Connect Real-Time PCR Detection System.
miRNA and mRNA primer assays from QIAGEN were utilized. mRNA was
normalized to GAPDH and miRNA was normalized to RNU6. Exosomal RNA
was collected with the ExoQuick-TC reagent and TRIzol RNA isolation
method. Exosome pellets were incubated in TRIzol for 1–2 h before the
isolation procedure. See exosome and RNA collection methods above.

Western Blot
Protocol was carried out as previously described.40 E-cadherin antibody
was used at 1:1000 dilution and HRP-conjugated secondary used at 1:3000.
See Supplementary Table S2 for antibodies used.

Statistical analyses
Five biological replicated were utilized in MTT assays. Six biological
replicates were used in mouse studies. All other studies utilized three
biological replicates. RT-PCR experiments also utilized three technical
replicates. Sample sizes were determined to ensure adequate power to
detect a pre-specified effect size when applicable based on previously
generated data. Data are presented as the mean± s.d. Statistical
significance was calculated via Microsoft Excel using a Student t-test
(one-sided) or ANOVA as appropriate. Data generated displayed normal
distribution with similar variances, and analysis was performed assuming
equal variances. * Denotes P-valueo0.05 ** denotes P-valueo0.01.
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