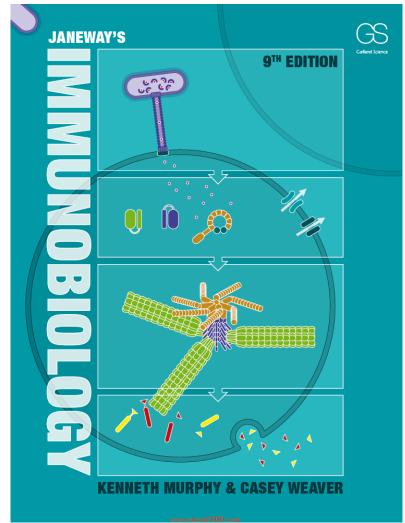

Biologie des Cancers

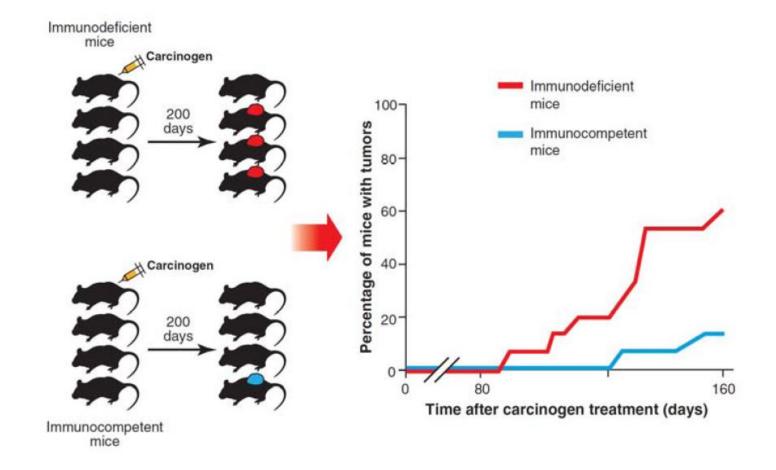


Cancer et immunité

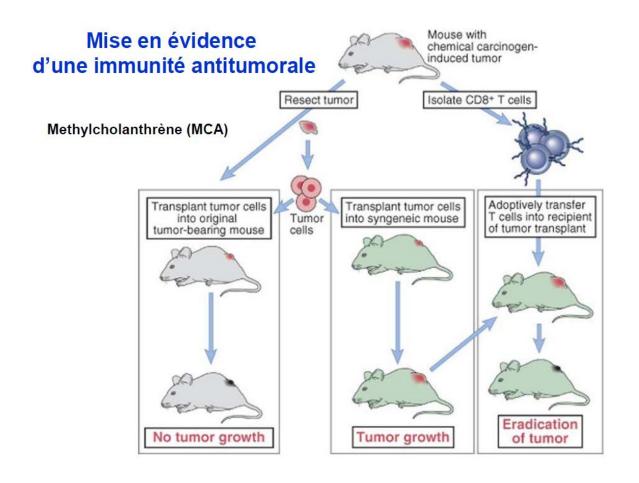
Dr Olivier DELLIS

Physiopathogénèse et Traitement des Maladies du Foie UMRS 1193 INSERM olivier.dellis@universite-paris-saclay.fr

Sommaire:


- 1. Tumeur vs. système immunitaire
- 2. Antigènes anti-tumoraux et réponse immunitaire anti-tumoral
- 3. Thérapie: ex des CAR-T

1. Tumeur vs. système immunitaire


Mise en évidence

→ Le système immunitaire contrôle le développement des tumeurs

"mémoire de la tumeur"

→ Rôle important des LT CD8

Immunosurveillance des tumeurs

Hypothèse de Burnet & Thomas, 1950

- → existence d'antigènes tumoraux
- → transformations cellulaires amenant au cancer induisent l'expression de nouveaux antigènes susceptibles d'être reconnus par le système immunitaire

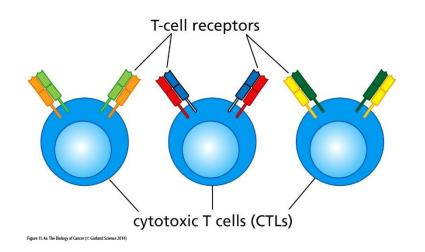
Démontrée dans les années 80 grâce aux souris RAG- γ c = \emptyset LT, LB et NK

- → injection agent inducteur
- ⇒ Développement tumeurs plus rapide
- ⇒ Développement de tumeurs spontanées

Un développement en 3 phases


- 1. Elimination par immunité innée
- → cellule tumorale reconnue
- 2. Equilibre
- → qq variants non détruits, sélection de clones se soustrayant au système immunitaire
- 3. Échappement
- → développement de la tumeur

2. Antigènes tumoraux et réponse immunitaire anti-tumorale


Antigènes de tumeur

- → Antigènes sur tumeurs activent les LT (gènes MAGE)
- → Cytotoxic TL

Lymphocytes T cytotoxiques

→ CTL ont des TCR variables (développement du système immunitaire)

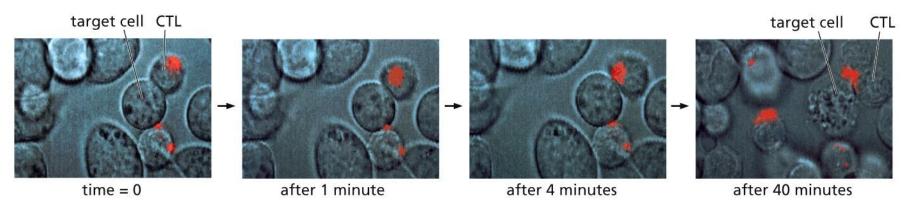
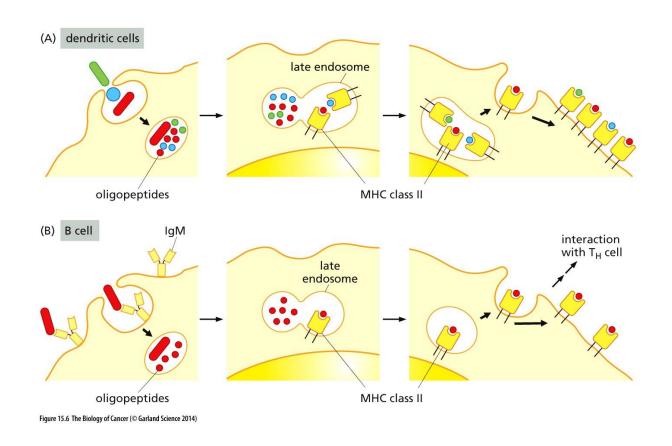



Figure 15.4b The Biology of Cancer (© Garland Science 2014)

Présentation de l'antigène (tumoral)

→ Présentation via CMH de type 2

Présentation de l'antigène (tumoral)

productive interaction between dendritic cell and TH cell

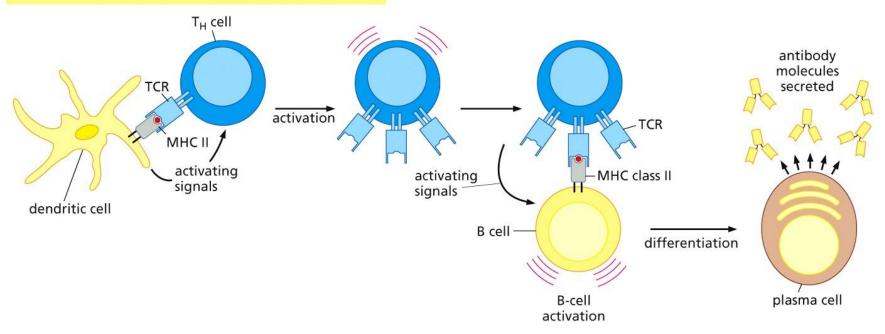
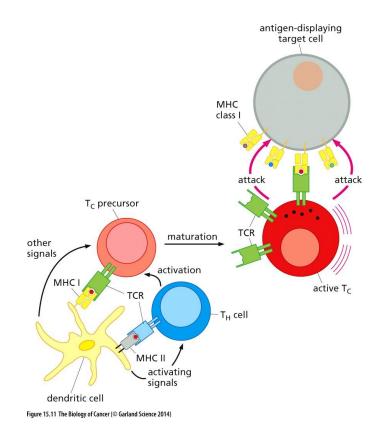



Figure 15.8 (part 2 of 2) The Biology of Cancer (© Garland Science 2014)

→ Lancement de la réponse immunitaire anti-tumorale

Activation des CTLs par les cellules dendritiques (DC)

DC utilisent CMH I et II pour activer LT → CTL

Présentation des antigènes du soi

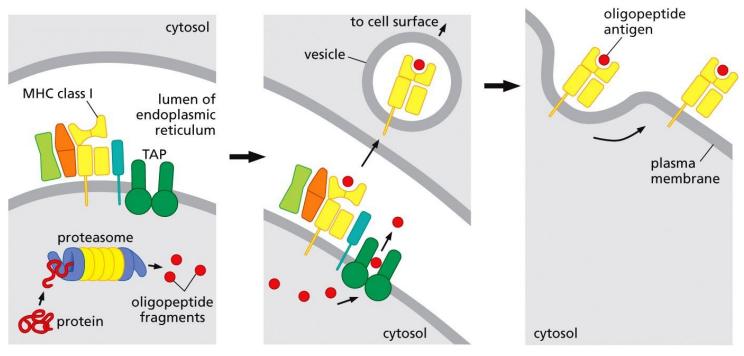


Figure 15.10a The Biology of Cancer (© Garland Science 2014)

Toutes les cellules normales (et tumorales) détournent un peu de leurs protéine pour les exposer à l'extérieur via CMH I

Destruction par CTL

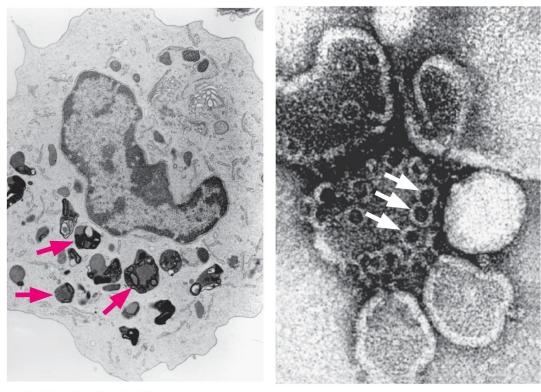
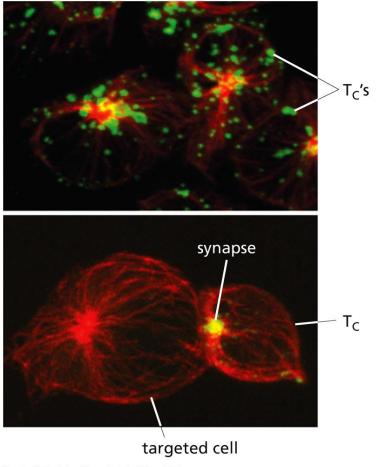



Figure 15.12a The Biology of Cancer (© Garland Science 2014)

CTL activé déverse ses granules lytiques

Destruction par CTL

CTL activé déverse ses granules lytiques au niveau du contact = synapse

Figure 15.12b The Biology of Cancer (© Garland Science 2014)

Destruction via système Fas

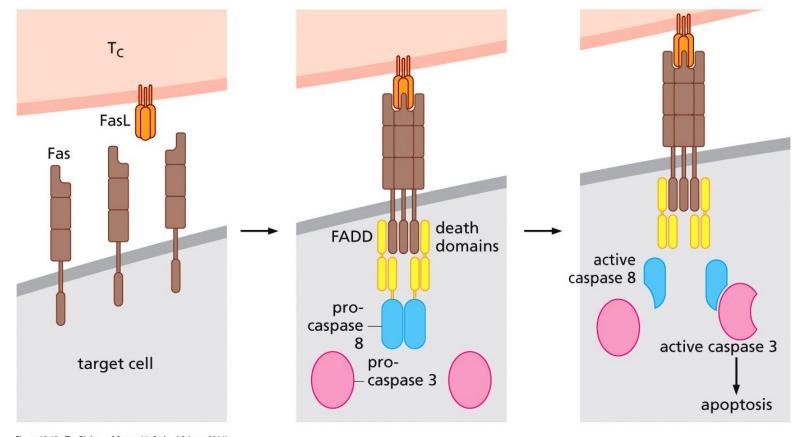


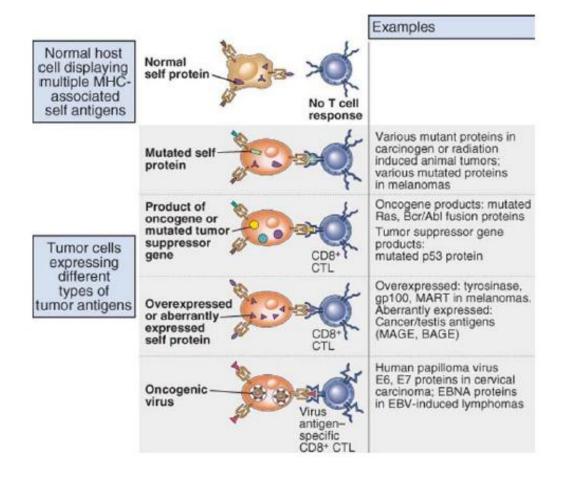
Figure 15.12c The Biology of Cancer (© Garland Science 2014)

CTL activé stimule cellule cible via Fas-FasL → apoptose

Conclusion sur présentation antigène

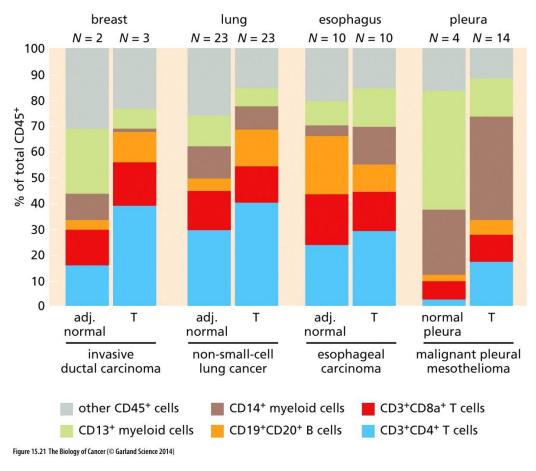
Toutes les cellules normales et tumorales expriment une part de toutes leurs protéines à leur surface → pourront être reconnue....

Activation directe des CTL ou via DC Lyse directe ou induction apoptose


2 types:

- . exprimés uniquement dans les cellules tumorales
- . exprimés dans les tissus normaux et tumoraux, mais dérégulés

- . Protéines mutées
- . Protéines anormalement exprimées
- . Antigènes de virus oncogéniques
- . Antigènes fœtaux
- . Glycolipides et glycoprotéines modifiés
- . Antigènes de différenciation tissulaire



Category	Antigen	Associated cancer types	
	HPV: L1, E6, E7	Cervical carcinoma	
Tumor-specific - viral	HBV: HBsAg	Hepatocellular carcinoma	
	SV40: Tag	Malignant pleural mesothelioma	
Tumor-specific - self	CDK-4	Melanoma	
	β -catenin	Melanoma	
	Caspase-8	Head/neck	
CT antigen	MAGE-A1	Melanoma, myeloma, bladder, breast, prostate, lung, head/neck, esophageal, sarcoma	
	NY-ESO-1	Melanoma, myeloma, bladder, breast, prostate, lung, head/neck, esophageal, sarcoma	
Overexpression	MUCI	Breast, ovarian	
	MUC13/CA-125	Ovarian	
	HER-2/neu	Breast, melanoma, ovarian, gastric, pancreatic	
	Mesothelin	Malignant pleural mesothelioma, ovarian, pancreatic	
	PSMA	Prostate	
	TPD52	Prostate, breast, ovarian	
Differentiation	CEA	Colon	
	Gp100	Melanoma	
	MART-1/Melan-A	Melanoma	
	Tyrosinase	Melanoma	
	PSA	Prostate	
	PAP	Prostate	

Abbreviations: HPV, human papilloma virus; HBV, hepatitis B virus; SV40, simian virus 40; L, late gene; E, early gene; HBsAg, hepatitis B surface antigen; Tag, large tumor antigen; CDK, cyclin-dependent kinase; CT, cancer/testis; MAGE, melanoma-associated antigen; NY-ESO, New York esophageal squamous cell carcinoma; MUC, mucin; CA, cancer antigen; HER/neu, human epidermal receptor/neurological; PSMA, prostate-specific membrane antigen; TP, tumor protein; CEA, carcinoembryonic antigen; Gp, glycoprotein; MART/Melan-A, melanoma antigen recognized by T cells/melanoma antigen-A; PSA, prostate specific antigen; PAP, prostatic acid phosphatase.

Infiltration du système immunitaire dépend de l'organe

Pas les mêmes cellules... pas les mêmes réponses...

Echappement

Table 15.4 Immunoevasive strategies used by cancer cells

Strategy	Mechanism	Agent being evaded
Hide identity	repress tumor antigens (TATA or TSTA), repress MHC class I proteins	cytotoxic T lymphocytes
Hide stress	repress NKG2D ligands (e.g., MICA)	NK cells
Inactivate immunocytes	destroy immunocyte receptors	NK cells; cytotoxic T lymphocytes
	saturate immunocyte receptors with adenosine, MICA	NK cells; variety of immunocytes
	induce T _{reg} formation	variety of T lymphocytes
Avoid apoptosis	inhibit caspase cascade by increasing IAPs, acquire resistance to FasL-mediated apoptosis	
Induce immunocyte apoptosis	release soluble FasL	cytotoxic T lymphocytes
	release cytokines (IL-10, TGF- β)	cytotoxic T lymphocytes, dendritic cells, macrophages
Neutralize intracellular toxins	enzymatic detoxification of H_2O_2 , prostaglandin E_2	macrophages, NK cells
Neutralize complement	overexpress mCRPs	complement system
Up-regulate CD47 expression	express "don't eat me" signal on cell surface	phagocytic cells

Table 15.4 The Biology of Cancer (© Garland Science 2014)

Echappement, baisse CMH I

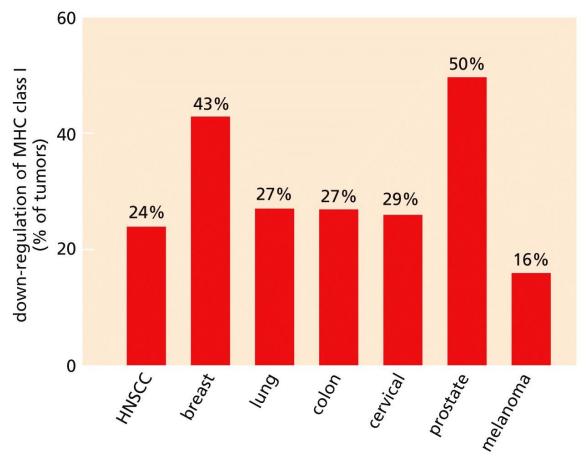


Figure 15.27b The Biology of Cancer (© Garland Science 2014)

Baisse de l'exposition de protéines cellulaires via CMH I

Echappement, baisse CMH I

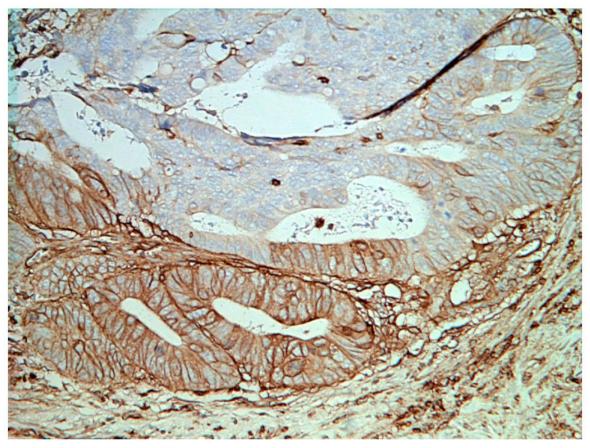
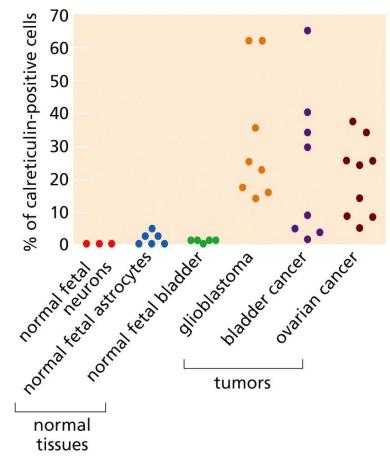
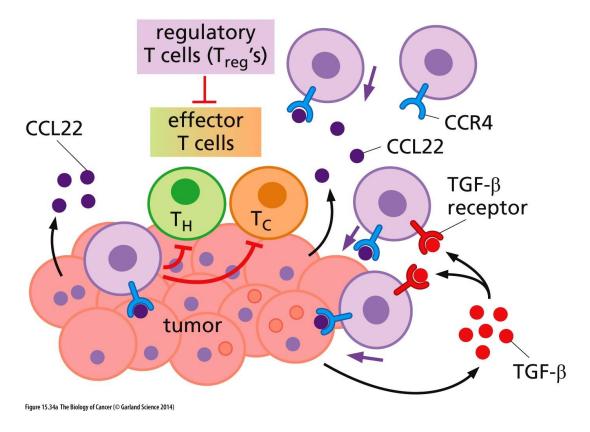



Figure 15.27a The Biology of Cancer (© Garland Science 2014)

Cancer colorectal, coloration MHC I

Echappement, Signal "Eat-me"


Calréticuline = protéine du RE

Induit la phagocytose si à la surface cellulaire

Inhibition par mobilization des T-reg

Tumeur sécrète la chémokine CCL22 qui attire les T-reg
→ inhibition de l'activation des T-helper et T-cytotoxic

Environnement immunosuppressif

Inhibition par mobilization des T-reg

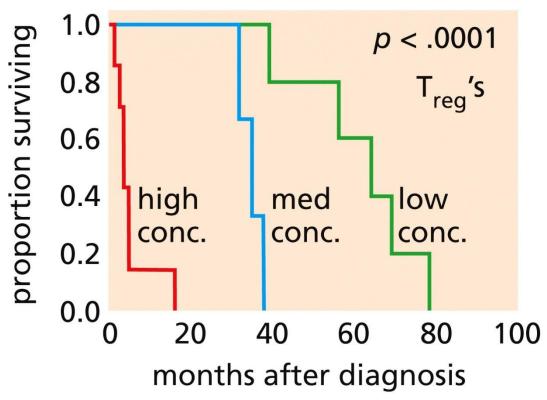


Figure 15.34c The Biology of Cancer (© Garland Science 2014)

Cancer ovarien
Survie augmente quand il y a peu de T-reg infiltré

Conclusion sur échappement

Il existe une multitude de possibilités pour les cellules cancéreuses pour s'échapper du contrôle immunitaire

- . En « se cachant »
- . En rendant l'environnement tumoral immunosuppressif

3. Thérapie: ex des CAR-T

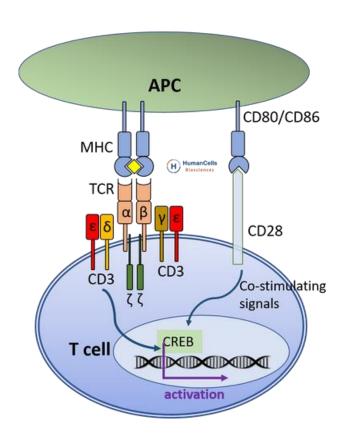
= comment utiliser le système immunitaire

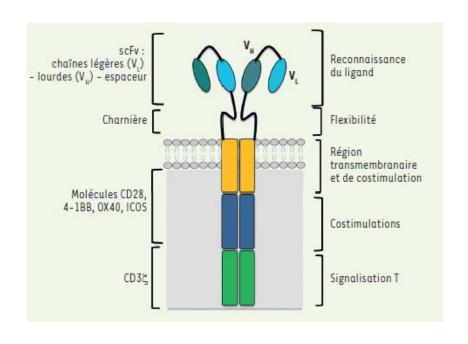
Ex de thérapies anticancéreuses impliquant le système immunitaire

- 1. Stimulation du système, ex: cytokines
- 2. Bloquer signaux antitumoraux, ex: rituximab (anti CD20 Lymphopathie B)
- 3. Vaccin thérapeutique: DC + antigène tumoral, ré-injecté
- 4. CAR-T

Chimeric Antigen Receptor T cells = CAR-T

Les LT infiltrés peuvent reconnaitre les antigènes tumoraux
→ interaction dépend du récepteur T


Rq: TCR bcp moins actif avec antigènes tumoraux qu'avec antigènes rétroviraux...


→ comment augmenter efficacité / spécificté du TCR ?

=> Faire exprimer au LT un récepteur dérivé d'un anticorps spécifique contre un antigène tumoral

Chimeric Antigen Receptor T cells = CAR-T

CAR = anticorps + partie TCR + costimulation

→ permet au LT de s'activer quand il reconnait antigène spécifique

Chimeric Antigen Receptor T cells = CAR-T

Processus:

- 1. Les LT sont prélevés sur le patient → *culture in vitro*
- 2. Les LT sont transfectés avec la construction CAR
- 3. Les CAR-T sont activés par IL2, anti-CD3 et/ou anti-CD28
- 4. Les CAR-T sont réinjectés au patient

Rq: LT du patient, dc pas de « rejet »

Partie variable = partie anticorps

CAR-T CD19

CD19 (et CD22) = récepteur spécifique des LB → CAR-T CD19 cible les lymphopathies B

2018: 90% réponse des patients en rechute de LAL

Inconvénients: relargage de cytokines... rush...

Avenir des CAR-T

1ère génération: pas de costimulation (anergie...)

2^e génération: ajout module costimulation

3º génération: ajout 2º module de stimulation (dure plus longtemps...) ou changement du module de transduction du signal TCR par celui du NK

4^e génération: ajout module activation synthèse de cytokine

- + Muliti-CAR: plusieurs CAR dans même cellule, ou 1 dans plusieurs cellules
- → baisse toxicité...

Conclusion

Le système immunitaire est impliqué dans le contrôle des tumeurs

La tumeur développe plusieurs stratégies pour inhiber ce contrôle

Plusieurs thérapies pour « éduquer » le système immunitaire contre les tumeurs

