

THERMODYNAMIQUE

TD4 - Premier Principe de la Thermodynamique

Données : $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$, indice adiabatique d'un gaz parfait diatomique : $\gamma = 7/5$.

Exercice 1 - Compression réversible d'un gaz parfait

On réalise la compression réversible isotherme à T = 25 °C de 0,25 mole de N_2 , de $P_0 = 1$ atm à $P_1 = 50$ atm.

- Calculer la variation de l'énergie interne
 ΔU du gaz lors de la compression.
- 2. Calculer la quantité de chaleur Q échangée pendant la compression.

Exercice 2 - Détente irréversible d'un gaz parfait

Quatre moles d'oxygène sont contenues dans un récipient de 20 L à la température $T_0 = 270$ K. Lors d'une détente adiabatique irréversible contre une pression extérieure constante $P_{\text{ext}} = 0,73$ atm, le volume du gaz triple de valeur.

- 1. Calculer Q, puis W, ΔU et enfin ΔH lors de cette transformation.
- 2. En utilisant la valeur de ΔU calculée à la question précédente, calculer la température finale T_1 du gaz.

Exercice 3 - Transformations réversibles d'un gaz parfait

Une mole de gaz parfait diatomique occupe initialement un volume de 10 L sous une pression de 1 atm (état A). Le gaz est chauffé à pression constante jusqu'à doubler

son volume (état B). Puis, un chauffage à volume constant permet de doubler sa pression (état C). Enfin, une détente adiabatique permet de revenir à la température initiale T_A (état D). Toutes les transformations sont supposées réversibles.

- 1. Exprimer puis calculer les caractéristiques P, V et T des quatre états A, B, C et D. Les résultats pourront être présentés dans un tableau.
- Représenter les états et les transformations dans le diagramme de Clapeyron.
- 3. Calculer ΔU et ΔH , puis W et Q pour chacune des trois transformations.

Exercice 4 - Piston

Un cylindre vertical, fermé par un piston de masse m négligeable et de section S, coulissant sans frottements, contient une

mole de gaz parfait diatomique, et est en contact avec une atmosphère extérieure à la pression P_{atm} . Les parois du cylindre et du piston sont adiabatiques. La température initiale du gaz est T_0 , sa pression P_0 et son volume $V_0 = S.h_0$ (h_0 est la hauteur initiale du piston dans le cylindre).

- 1. On dépose brusquement sur le piston une masse M. Le piston s'enfonce dans le cylindre et, l'équilibre étant atteint, le volume du gaz devient $V_1 = S.h_1$. La pression du gaz est alors P_1 et sa température T_1 .
- a) Quelle est la nature de la transformation ? Déterminez P₀ et P₁ en écrivant l'équilibre mécanique du piston. Quelle est la hauteur h₀ du piston mesurée dans le cylindre à l'instant initial ?

- b) Exprimez le travail échangé $W_{0\rightarrow 1}$ durant la transformation en fonction de T_{0} , T_{1} , n et R.
- c) Exprimez la variation d'énergie interne du gaz $\Delta U_0 \rightarrow_1$ en fonction de T_0 , T_1 , n et R.
- d) Utilisez les expressions trouvées aux questions b et c, pour en déduire la température finale du gaz T_1 .
- e) Calculez la valeur du travail échangé durant la transformation $W_{0}\rightarrow_{1}$. Quelle est la hauteur h_{1} du piston mesurée dans le cylindre à la fin de la transformation ?
- 2. On enlève maintenant la masse M du piston, et on laisse le système évoluer jusqu'à un nouvel état d'équilibre (2).
 - a) Que vaut la pression P2?
- b) De manière analogue aux questions 1b à 1e, déterminez le travail échangé pendant la transformation $W_{1}\rightarrow_{2}$, la température T_{2} et la hauteur h_{2} du piston mesurée dans le

cylindre. Pourquoi ne retourne-t-on pas à l'état initial (0) ?

Données :
$$P_{atm} = 10^5 Pa$$
 ; $M = 100 kg$; $S = 100 cm^2$; $\bar{c}_V = \frac{5}{2}R$; $T_0 = 27 °C$; $q = 10 m.s^{-2}$.

Exercice 5 - Cycle d'un gaz parfait

Une mole de gaz parfait diatomique initialement à l'état A (à la température $T_A = 300$ K et à la pression $P_A = 1$ bar) subit le cycle de transformations réversibles suivant :

- (AB) est une compression adiabatique qui amène le gaz à la pression $P_B = 5$ bars ;
- (BC) est une détente isobare qui ramène le volume du gaz à sa valeur initiale V_A;
- (CA) est un refroidissement isochore vers l'état initial.
 - Déterminer les caractéristiques des états
 A, B et C.

- 2. Représenter le cycle dans le diagramme de Clapeyron.
- 3. Calculer le travail et la chaleur échangés par le gaz au cours d'un cycle.